این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Journal of Mining and Environment
، جلد ۱۳، شماره ۴، صفحات ۹۹۷-۱۰۱۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Selection of Appropriate Probability Distributions for Rock Analysis using Laser-induced Breakdown Spectroscopy
چکیده انگلیسی مقاله
In this work, an attempt is made to fit and identify the most appropriate probability distribution(s) for the analysis of seventeen rock samples including diorite, gypsum, marble, basalt, sandstone, limestone, apatite, slate, dolomite, granite-II, schist, gneiss, amphibolite, hematitle, magnetite, Shale, and granite-I using laser-induced breakdown spectroscopy. The graphical assessment and visualization endorse that the rock dataset series are positively skewed. Therefore, Frechet, Weibull, log-logistic, log-normal, and generalized extreme value distributions are considered as candidate distributions, and the parameters of these distributions are estimated by maximum likelihood and Bayesian estimation methods. The goodness of fit test and model selection criteria such as the Kolmogorov-Smirnov test, Akaike Information Criterion, and Bayesian Information Criterion are used to quantify the accuracy of the predicted data using theoretical probability distributions. The results show that the Frechet, Weibull, and log-logistic distributions are the best-fitted probability distribution for rock dataset. Cluster analysis is also used to classify the selected rocks that share common characteristics, and it is observed that diorite and gypsum are placed in one cluster. However, slate, dolomite, marble, basalt, sandstone, schist, granite-II, and gneiss rocks belong to different clusters. Similarly, limestone and apatite appeare in one cluster. Likewise, shale, granite-I, magnetite, amphibolite, and hematitle appeare in a different cluster. The current work demonstrate that coupling of laser-induced breakdown spectroscopy with suitable statistical tools can identify and classify the rocks very efficiently.
کلیدواژههای انگلیسی مقاله
LIBS, Rock Analysis, Statistical distributions, Akaike Information Criterion, Bayesian Information Criterion
نویسندگان مقاله
Kamran Abbas |
Department of Statistics, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
Adeel Nawazish |
Department of Statistics, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
Navid Feroze |
Department of Statistics, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
Nasar Male Ahmed |
Department of Physics, King Abdullah Campus Chatter Kalas, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_2607_3c3f8a8b26696dc5c216173c99e26573.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات