این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Journal of Mining and Environment
، جلد ۱۳، شماره ۴، صفحات ۱۲۱۱-۱۲۲۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Financial Risk Management Prediction of Mining and Industrial Projects using Combination of Artificial Intelligence and Simulation Methods
چکیده انگلیسی مقاله
Feasibility studies of mining and industrial investment projects are usually associated with uncertain parameters; hence, these investigations rely on prediction. In these particular conditions, simulation and modelling techniques remain the most significant approaches to reduce the decision risk. Since several uncertain parameters are incorporated in the modelling process, distribution functions are employed to explain the parameters. However, due to the usual constrain of limited data, these functions cannot significantly explain the variation of those uncertain parameters. Support vector machine, one of the efficient techniques of artificial intelligence, provides the appropriate results in the classification and regression tasks. The principal aims of this research work are to integrate the simulation and artificial intelligence methods to manage the risk prediction of an economic system under uncertain conditions. The financial process of the Halichal mine in the Mazandaran province, Iran, is considered a case study to prove the performance of the support vector machine technique. The results show that integrating the simulation and support vector machine techniques can provide more realistic results, especially when including uncertain parameters. The correlation between the net present value obtained from the simulation and the net present value is about 0.96, which shows the capability of artificial intelligence methods and the simulation process. The root mean square error of the support vector machine prediction is about 0.322, which indicates a low error rate in the net present value estimation. The values of these errors prove that this method has a high accuracy and performance for predicting a net present value in the Halichal granite mine.
کلیدواژههای انگلیسی مقاله
Risk analysis, Simulation Model, Economy, Financial Process, Support Vector Machine
نویسندگان مقاله
Sirvan Moradi |
Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
Seyed Davoud Mohammadi |
Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
Abbas Aghajani Bazzazi |
Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
Ali Aali Anvari |
Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
Ava Osmanpour |
Department of Geology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_2606_8f45563508b98b0a2732c366ddf7513c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات