این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Mining and Environment، جلد ۱۳، شماره ۳، صفحات ۷۹۷-۸۰۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Deep Neural Network for Classification of Land Use Satellite Datasets in Mining Environments
چکیده انگلیسی مقاله Land use (LU) is one of the most imperative pieces of cartographic information used for monitoring the mining environment. The extraction of land use data sets from remotely sensed satellite images has garnered significant interest in the mining region community. However, classification of LUs from satellite images remains a tedious task due to the lack of availability of efficient coal mining related datasets. Deep learning methods provide great leverage to extract meaningful information from high-resolution satellite images. Moreover, the performance of a deep learning classification approach significantly depends on the quality of the datasets. The present work attempts to demonstrate the generation of satellite-based datasets for the performance analysis of different deep neural network (DNN)-based learning algorithms in the LU classifications of mining regions. The mining regions are broadly classified into distinct regions based on visual inspection, namely barren land, built-up areas, waterbody, vegetation, and active coal mines. In our experimental work, a patch of 100 spatial samples for each of the five features is generated on three scales, as [1 × 1 × 3], [5 × 5 × 3], and [10 × 10 × 3]. Moreover, the effects of different scalabilities of the dataset on classification performances are also analyzed. Furthermore, this case study is implemented for the large-scale benchmark of satellite image datasets for mining regions. In the future, this work can be used to classify LU in the relevant study regions in real time.
کلیدواژه‌های انگلیسی مقاله Satellite image, Dataset, Mining region, Land use, DNN

نویسندگان مقاله Ajay Kumar |
School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Aditya Gupta |
School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Yadvendra Pratap Singh |
School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India

Monu Bhagat |
School of Computer Science and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India


نشانی اینترنتی https://jme.shahroodut.ac.ir/article_2526_9f8428656f6d4cd707a91d7d7ae0bffa.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات