این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Petroleum Science and Technology، جلد ۱۲، شماره ۱، صفحات ۶۲-۷۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Reservoir Quality Evaluation based on Integration of Artificial Intelligence and NMR-derived Electrofacies
چکیده انگلیسی مقاله Logarithmic Mean of Transverse relaxation time (T2LM) and total porosity of the Combinable Magnetic Resonance tool (TCMR) are the main parameters of the Nuclear Magnetic Resonance (NMR) log which provide very substantial information for reservoir evaluation and characterization. Reservoir properties, for example, porosity and permeability, free and bound fluid volumes, and clay-bound water, could be calculated through the interpretation of T2LM and TCMR. In this manuscript, an intelligent approach has been used by us to predict NMR log parameters and their corresponding electrofacies from well log data. We define NMR electrofacies as classes of NMR log parameters representing reservoir quality are defined by us. For this purpose, NMR logs and petrophysical data are available for two different formations situated in the Ahvaz field. Data from Ilam formation were applied in order to construct the intelligent models, the same as Asmari formation, data were applied for reliability evaluation of the created models. The outcome results reveal higher performance levels of the Neural Network (NN) technique compared to the neuro-fuzzy (NF) model. The synthetically generated T2LM and TCMR logs are then calculated for the four logged wells from the Ahvaz oilfield using a mathematical function, and they are named Virtual Nuclear Magnetic Resonance (VNMR) logs. Finally, VNMR logs were classified into a set of reservoir electrofacies by cluster analysis approach. Correlations between the VNMR electrofacies and reservoir quality based on porosity and permeability data helped evaluate the reservoir quality quickly, cost-effectively, and accurately.
کلیدواژه‌های انگلیسی مقاله Virtual NMR log, neural network, neuro-fuzzy, Back Propagation, Conventional Logs, NMR log parameters, Electrofacies

نویسندگان مقاله Reza Hoveyzavi |
Department of Petroleum Engineering, Kish International Campus, University of Tehran, Kish Island, Iran

Majid Nabi-Bidhendi |
Institute of Geophysics, University of Tehran, Iran

Ali Kadkhodaie |
Earth Sciences Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran

Shahin Parchekhari |
National Iranian South Oilfields Company (NISOC), Ahvaz, Iran


نشانی اینترنتی https://jpst.ripi.ir/article_1256_58d4b68e1820f9ba0bbc48b3afc01adc.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات