این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 3 دی 1404
فیزیک زمین و فضا
، جلد ۴۸، شماره ۳، صفحات ۷۱۳-۷۲۹
عنوان فارسی
پسپردازش خروجی مدل WRF بهروش کوکریجینگ، برای کمیتهای متوسط روزانه سرعت باد و رطوبت نسبی بر روی ایران
چکیده فارسی مقاله
پیشبینیهای متوسط روزانه سرعت باد و رطوبت نسبی در هر مکانی با دقت مناسب، در هواشناسی مهم است. خروجی مدل WRF با خطا همراهست، از اینرو نیاز به ارتقاء کیفیت پیشبینیهای است. هدف این مطالعه تصحیح خطای پیشبینیهای 24، 48 و 72 ساعته متوسط روزانه سرعت باد دهمتری و رطوبت نسبی در نقاط شبکه بر روی ایران است. خطای مدل طی دوره آموزش 5 و 14 روزه، برای نقاطی از شبکه که دارای داده مشاهداتی هستند محاسبه شد. این خطاها در نواحی هماقلیم، با استفاده از روش درونیابی کوکریجینگ، در سایر نقاط شبکه برآورد شد. بدینترتیب پیشبینی خام مدل برای نقاط فاقد داده مشاهداتی حفظ و تنها مقادیر برآورده شده خطا بر روی آنها اعمال میشود. دوره آماری 15 ماه، از 1/11/2019 الی 1/2/2021 برای 560 ایستگاه مشاهداتی کشور در نظر گرفته شد. نتایج نشان داد خطای برونداد خام مدل در ماهها، مکانها و نواحی اقلیمی مختلف، توزیع یکنواختی ندارد. بهطور متوسط نمره مهارت مدل، برای پیشبینی رطوبت نسبی بیشتر از سرعت باد است. بهطور کلی RMSE پیشبینیهای سرعت باد و رطوبت نسبی برای کل کشور بعد از تصحیح، بهترتیب 13 و 18 درصد کاهش و نمره مهارت حداکثر تا 160 و 308 درصد افزایش مییابد. مدل، سرعت باد را در اکثر مناطق کشور کمتر از مقدار مشاهده شده و رطوبت نسبی را بیشتر برآورد میکند. روش تصحیح خطای 14روزه نسبت بهروش 5روزه چندان سبب بهبود نمره مهارت مدل نشد و میتوان با روش 5روزه با هزینه محاسباتی کمتر به دقتی مشابه رسید.
کلیدواژههای فارسی مقاله
خطای سامانمند،درونیابی،کوکریجینگ،نمره مهارت،نواحی اقلیمی،
عنوان انگلیسی
Post Processing of WRF Model Output by Cokriging Method for Daily Average Wind Speed and Relative Humidity on Iran
چکیده انگلیسی مقاله
Weather forecasting and monitoring systems based on numerical weather forecasting models have been increasingly used to manage issues related to meteorology and agriculture. Using more accurate daily average wind speed (10m) and relative humidity forecasts can be helpful in this regard. But systematic and random errors in the model affect the accuracy of forecasts. In this study, the model errors during the 5 and 14 days training period in the same climate areas on the points of the network where the observations are available were calculated. Then the errors were generalized on all points of the network using the cokriging interpolation method. This preserves the model forecasts for other points of the network and only error values are applied to them. To better evaluate the model, the spatial and temporal distribution of daily average wind speed (10m) and relative humidity forecast errors were also investigated over Iran. Observed daily wind speed and relative humidity data from 560 meteorological stations for the period 1/11/2019 to 1/2/2021 were used to evaluate the WRF model performance. The WRF model was run daily at 12UTC, with a forecast time of 120 hours, and first 12 hours of each run was consider as the model spin-up time and was not used in errors calculation. In order to correct wind speed and relative humidity forecast errors for next three days (forecasts of 36, 60 and 84 hours), the forecasts for each day in the period of 11/1/ 2019 to 1/2/2021, was extracted from the model outputs. In order to evaluate the error correction method, the skill score index was used. The validation results of the error correction method showed that the absolute mean error value, correlation coefficient and RMSE improved after the error correction compared to results that were before the error correction, which showed that the error correction method can be used for other network points that did not contain observational data. In general after correction, the RMSE for wind speed and relative humidity forecasts could decrease by 13% and 18%, and the skill score could increase to a maximum of 160% and 308%, respectively. Value of correlation coefficient, after correcting the model error, was significantly increased, compared to the raw model output. In general skill score for the raw wind speed and relative humidity forecast for more than 50% of the days was more than -0.5 and -0.3, but after corrections were increased to 0.2, 0.4 respectively. Without exception, all climatic regions after error correction have higher skill scores than before error correction, so that the model skill score for most climatic regions after error correction was reached above zero for more than 75% of the days. The results showed that errors of the model in different months, places and climatic zones did not have a uniform distribution. In general, the model underestimated the wind speed and overestimated the relative humidity in most areas. In general, the lowest skill scores for relative humidity forecasts occurred in the colder months of November to February in most climatic zones. The 14-day error correction method did not improve the modeling skill score much compared to the 5-day error correction method, and they acted almost similarly. Knowing the spatial and temporal distribution of model forecast error can be helpful for researchers to have an overview of the areas (and months) where the model forecast error can be high or low.
کلیدواژههای انگلیسی مقاله
خطای سامانمند,درونیابی,کوکریجینگ,نمره مهارت,نواحی اقلیمی
نویسندگان مقاله
مجتبی شکوهی |
استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران
ابراهیم اسعدی اسکویی |
استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران
محمدرضا محمدپور پنچاه |
استادیار، پژوهشگاه هواشناسی و علوم جو، تهران، ایران
نشانی اینترنتی
https://jesphys.ut.ac.ir/article_86903_dc883018f568b262d05b7b8b6f75fc09.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات