این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۵، شماره Special Issue، صفحات ۵۲-۷۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Early Diagnosis of Alzheimer Disease from Mri Using Deep Learning Models
چکیده انگلیسی مقاله
On a global scale, one of the prevalent causes of dementia is Alzheimer’s disease (AD). It will cause a steady deterioration in the individual from the mild stage to the severe stage, and thus impair their capacity to finish any tasks with no aid. The diagnosis is done with the utilization of existing methods which include medical history; neuropsychological testing as well as MRI (Magnetic Resonance Imaging), a lack of sensitivity as well as precision does affect the consistency of efficient procedures. With the deep learning network’s utilization, it is possible to create a framework for detecting specific AD characteristics from the MRI images. While automatic diagnosis is done with the application of diverse machine learning techniques, the existing ones do suffer from certain constraints with regards to accuracy.Thus, this work’s key goal is to increase the classification’s accuracy through the inclusion of a pre-processing approach prior to the deep learning model. The Alzheimer's disease Neuroimaging Initiative (ADNI) database of AD patients was used to develop a deep learning approach for AD identification. In addition, this study will present ideas for Haralick features, feature extraction from Local Binary Pattern (LBP), Artificial Neural Network (ANN), and Visual Geometry Group (VGG)-19 network techniques. The results of the experiments show that the deep learners offered are more effective than other systems already in use.
کلیدواژههای انگلیسی مقاله
Alzheimer&apos,s disease (AD),Magnetic Resonance Imaging (MRI),Deep Learning (DL),Artificial Neural Network (ANN) and Visual Geometry Group (VGG)
نویسندگان مقاله
Apparna Allada |
Research Scholar, Department of CSE Annamalai University, Chidambaram
R. Bhavani |
Prof., Department of CSE, Annamalai University, Chidambaram,
Kavitha Chaduvula |
Professor, Department of IT SR Gudlavalleru Engineering College, Gudlavalleru
R. Priya |
Professor, Department of CSE, Annamalai University, Chidambaram
نشانی اینترنتی
https://jitm.ut.ac.ir/article_89411_5a74c48adf52b7c6047d7d1e1ba04f1d.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات