این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۴، شماره ۴، صفحات ۱۹-۳۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Android Malware Category and Family Identification Using Parallel Machine Learning
چکیده انگلیسی مقاله
Android malware is one of the most dangerous threats on the Internet. It has been on the rise for several years. As a result, it has impacted many applications such as healthcare, banking, transportation, government, e-commerce, etc. One of the most growing attacks is on Android systems due to its use in many devices worldwide. De-spite significant efforts in detecting and classifying Android malware, there is still a long way to improve the detection process and the classification performance. There is a necessity to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Hence, understand the distinct ob-jective of malware after identifying their family and category. This paper proposes an effective systematic and functional parallel machine-learning model for the dynamic detection of Android malware categories and families. Standard machine learning classifiers are implemented to analyze a massive malware dataset with 14 major mal-ware categories and 180 prominent malware families of the CCCS-CIC-AndMal2020 on dynamic layers to detect Android malware categories and families. The paper ex-periments with many machine learning algorithms and compares the proposed model with the most recent related work. The results indicate more than 96 % accuracy for Android Malware Category detection and more than 99% for Android Malware family detection overperforming the current related methods. The proposed model offers a highly accurate method for dynamic analysis of Android malware that cuts down the time required to analyze smartphone malware.
کلیدواژههای انگلیسی مقاله
Android Malware,Malware Analysis,Malware Category Classification,Malware Family Classification,Malware Dynamic Analysis
نویسندگان مقاله
Ahmed Hashem El Fiky |
M.Sc. in Systems and Computers Engineering, Department of Systems and Computers Engineering, Faculty of Engineering Al-Azhar University, Cairo, Egypt.
Mohamed Ashraf Madkour |
Professor, Department of Systems and Computers Engineering, Faculty of Engineering Al-Azhar University, Cairo, Egypt.
Ayman El Shenawy |
Assistant Professor, Department of Systems and Computers Engineering, Faculty of Engineering Al-Azhar University, Cairo, Egypt; Software Engineering and Information Technology, Faculty of Engineering and technology, Egyptian Chinese University, Cairo, Egypt.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_88133_16d42429ea8c150b3d16ef50fe0a21d7.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات