این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۳، شماره ۴، صفحات ۱۱۶-۱۲۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Determining Journal Rank by Applying Particle Swarm Optimization-Naive Bayes Classifier
چکیده انگلیسی مقاله
SCImago Journal Rank (SJR) is one indicator of a journal's reputation. The value is calculated based on several published journals, such as scholarly journals' scientific impact, representing the number of quotes sent to a journal and the relevance or reputation of journals from which the quotations originate. A high SJR value means that the corresponding journal has a high reputation. This study aims to approach the SJR classification by implementing a machine learning approach. A simple yet powerful method Naïve Bayes Classifier (NBC), is selected. NBC utilizes probability calculations based on Bayes' theorem. However, NBC has an assumption that the attribute values do not depend on each other. This method is optimized using Particle Swarm Optimization (PSO) to overcome this weakness. This study used SJR data of the computer science domain from 2014 to 2017. Publication without Q rank is filtered for better performance. As a result, the accuracy of the proposed method is higher than the baseline. The use of PSO significantly improves the NBC performance based on the performed T-test. The PSO-NBC selects four of eight features: H index, Cites/ Doc (2 Years), and Ref. / Doc. Overall results show that using PSO-NBC is closer to SJR rather than using mere NBC.
کلیدواژههای انگلیسی مقاله
Naive Bayes Classifier,SCImago Journal Rank,Journal Quartile,Classification
نویسندگان مقاله
Aji Prasetya Wibawa |
Associate Professor, Department of Electrical Engineering, University of Negeri Malang, Malang, Indonesia.
Sulton Aji Kurniawan |
BSc., Department of Electrical Engineering, University of Negeri Malang, Malang, Indonesia.
Ilham Ari Elbaith Zaeni |
Assistant Professor, Department of Electrical Engineering, University of Negeri Malang, Malang, Indonesia.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_83962_7f4737a2e507fcd03ccaa08c0ad6a1ac.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات