این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۳، شماره ۱، صفحات ۱۱۹-۱۴۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Sentiment Analysis of Tweets Using Supervised Machine Learning Techniques Based on Term Frequency
چکیده انگلیسی مقاله World of technology provides everyone with a great outlet to give their opinion, using social media like Twitter and other platforms. This paper employs machine learning methods for text analysis to obtain sentiments of reviews by the people on twitter. Sentiment analysis of the text uses Natural language processing, a machine learning technique to tell the orientation of opinion of a piece of text. This system extracts attributes from the piece of writing such as a) The polarity of text, whether the speaker is criticizing or appreciating, b) The topic of discussion, subject of the text. A comparison of the work done so far on sentiment analysis on tweets has been shown. A detailed discussion on feature extraction and feature representation is provided. Comparison of six classifiers: Naïve Bayes, Decision Tree, Logistic Regression, Support Vector Machine, XGBoost and Random Forest, based on their accuracy depending upon type of feature, is shown. Moreover, this paper also provides sentiment analysis of political views and public opinion on lockdown in India. Tweets with ‘#lockdown’ are analysed for their sentiment categorically and a schematic analysis is shown.
کلیدواژه‌های انگلیسی مقاله Feature representation,TFIDF,N-grams,Pre-processing,Tokenization,Word Cloud

نویسندگان مقاله Deepti Aggarwal |
Assistant Professor, JSS Academy of Technical Education, Noida.

Vikram Bali |
Professor, JSS Academy of Technical Education, Noida.

Abhishek Agarwal |
JSS Academy of Technical Education, Noida.

Kshitiz Poswal |
JSS Academy of Technical Education, Noida

Madhav Gupta |
JSS Academy of Technical Education, Noida.

Abhishek Gupta |
JSS Academy of Technical Education, Noida.


نشانی اینترنتی https://jitm.ut.ac.ir/article_80028_8ae058e6b04c467254323c64b21f2889.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات