این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۲، شماره Special Issue: The Importance of Human Computer Interaction: Challenges, Methods and Applications.، صفحات ۱۱-۲۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Long Short-Term Memory Approach for Coronavirus Disease Predicti
چکیده انگلیسی مقاله Corona Virus (COVID-19) is a major problem among people, and it causes suffering worldwide. Yet, the traditional prediction models are not yet suitably efficient in catching the fundamental expertise as they cannot visualize the difficulty in the health's representation problem areas. This paper states prediction mechanism that uses a model of deep learning called Long Short-Term Memory (LSTM). We have carried this model out on corona virus dataset that obtained from the records of infections, deaths, and recovery cases across the world. Furthermore, producing a dataset which includes features of geographic regions (temperature and humidity) that have experienced severe virus outbreaks, risk factors, spatio-temporal analysis, and social behavior of people, a predictive model can be developed for areas where the virus is likely to spread. However, the outcomes of this study are justifiable to alert the authorities and the people to take precautions.
کلیدواژه‌های انگلیسی مقاله Deep learning,LSTM,Prediction,Covid-19,Recurrent Neural Network (RNN)

نویسندگان مقاله Omar Ibrahim Obaid |
Department of Computer Science, College of Education, AL-Iraqia University, Baghdad, Iraq.

Mazin Abed Mohammed |
Ph.D., College of Computer Science and Information Technology, University of Anbar, Ramadi, 31001, Iraq.

Salama A. Mostafa |
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, 86400, Malaysia.


نشانی اینترنتی https://jitm.ut.ac.ir/article_79187_610e84342be9afc08de825da1a72d188.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات