این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۲، شماره Special Issue: The Importance of Human Computer Interaction: Challenges, Methods and Applications.، صفحات ۱۰۹-۱۲۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Classification of Lung Nodule Using Hybridized Deep Feature Technique
چکیده انگلیسی مقاله
Deep learning techniques have become very popular among Artificial Intelligence (AI) techniques in many areas of life. Among many types of deep learning techniques, Convolutional Neural Networks (CNN) can be useful in image classification applications. In this work, a hybridized approach has been followed to classify lung nodule as benign or malignant. This will help in early detection of lung cancer and help in the life expectancy of lung cancer patients thereby reducing the mortality rate by this deadly disease scourging the world. The hybridization has been carried out between handcrafted features and deep features. The machine learning algorithms such as SVM and Logistic Regression have been used to classify the nodules based on the features. The dimensionality reduction technique, Principle Component Analysis (PCA) has been introduced to improve the performance of hybridized features with SVM. The experiments have been carried out with 14 different methods. It has been found that GLCM + VGG19 + PCA + SVM outperformed all other models with an accuracy of 94.93%, sensitivity of 90.9%, specificity of 97.36% and precision of 95.44%. The F1 score was found to be 0.93 and the AUC was 0.9843. The False Positive Rate was found to be 2.637% and False Negative Rate was 9.09%.
کلیدواژههای انگلیسی مقاله
CNN,Transfer Learning,GLCM,SVM,PCA
نویسندگان مقاله
Malin Bruntha |
Assistant Prof., Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India.
Immanuel Alex Pandian |
Assistant Prof., Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India.
Siril Sam Abraham |
Computer Vision Intern, Vasundharaa Geo Technologies, Pune, Maharashtra, India.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_79369_c5abf1274531aa0c9c8485bc78aee6ae.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات