این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 1 دی 1404
مدیریت فناوری اطلاعات
، جلد ۱۵، شماره Special Issue: Digital Twin Enabled Neural Networks Architecture Management for Sustainable Computing، صفحات ۱۲۴-۱۴۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Flash Attack Prognosis by Ensemble Supervised Learning for IoT Networks
چکیده انگلیسی مقاله
The scope of the Internet of Things (IoT) becomes inevitable in the communication and information-sharing routines of human life, similar to any technological architecture. The IoT is also not exempted from vulnerability to security issues and is even more vulnerable as the networks of IoT are built of non-smart devices. Though the few contributions endeavored to defend against the botnet's attacks on IoT, they partially or poorly performed to defend against the flash crowd or attacks by botnets on IoT networks. In this context, the method “Flash Attack Prognosis by Ensemble Supervised Learning for IoT Networks” derived in this manuscript is centric on defending the flash attacks by botnets. Unlike contemporary models, the proposed method uses the fusion of traditional network features and temporal features as input to train the classifiers. Also, the curse of dimensionality in the training corpus, which is often, appears in the corpus of flash attack transactions by a botnet, has addressed by the ensemble classification strategy. The comparative analysis of the statistics obtained from the experimental study has displayed the significance and robustness of the proposed model compared to contemporary models
کلیدواژههای انگلیسی مقاله
Unlike contemporary models,IoT network,Uniform manifold,Classifier
نویسندگان مقاله
M. Jagadeesh Babu |
Department of Electronics and Communication Engineering, Jawaharlal Nehru Technological University, Anantapur, Andhra Pradesh, India.
A.R Reddy |
Retired Senior Scientist- R2, ITI Limited, Bangalore, Karnataka, India.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_91572_d6771eb3b4353eb8e1581595e253a511.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات