این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
تحقیقات اقتصادی
، جلد ۴۴، شماره ۱، صفحات ۰-۰
عنوان فارسی
برآورد و پیش بینی تلاطم بازدهی در بازار سهام تهران و مقایسه دقت روشها در تخمین ارزش در معرض خطر: کاربردی از مدلهای خانوده FIGARCH
چکیده فارسی مقاله
پیش بینی تلاطم یکی از مهمترین موضوعات مورد مطالعه ریسک در بازارهای مالی است. در تحقیق حاضر ابتدا با استفاده از روشهای GARCH، تلاطم موجود با استفاده از 1467 داده روزانه برای شاخص قیمت بورس تهران برآورد شده و بهترین مدلها در تخمین و پیشبینی تلاطم برای توزیع نرمال و توزیع تی- استیودنت نتیجه شده است. با توجه به وجود علائم حافظه بلندمدت برای تبیین میانگین شرطی، از مدل ARFIMA و برای واریانس شرطی، در کنار مدلهای با حافظه کوتاه مدت، از مدل با حافظه بلندمدت FIGARCH استفاده شده است. برای انجام پیشبینی در دوره خارج از دوره نمونه، مدل ARFIMA-FIGARCH با توزیع نرمال، دقیقترین مدل بوده و نتایج بهتری را ارائه میدهد. یکی از روشهای مطرح در بررسی ریسکها و مدیریت ریسک، تخمین VaR یا ارزش در معرض خطر است. مقایسه مدلها نشان میدهد که در سطوح اطمینان متفاوت برای تخمین ارزش در معرض خطر، مدلهای مختلف نتایج متفاوتی میدهند، ولی میتوان گفت مدل FIGARCH در سطح معنیداری 5/2? بهترین عملکرد را در میان مدلهای GARCH دارد. طبقهبندی JEL : F45 , G32
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Appraisal on the Performance of FIGARCH Models in the Estimation of VaR: the Case Study of Tehran Stock Exchange
چکیده انگلیسی مقاله
Risk prediction plays an increasing role in financial risk management. This study aims to investigate existence of asymmetry and long memory volatility in Tehran Stock Exchange Index daily data over period of 1998-2006. 1467 daily index returns are used for volatility modeling via GARCH (Long & short Memory) processes for both normal and t-student innovations. The specification and forecasting performance of competing volatility models are compared by standard criteria. Considering the evidence of long memory, ARFIMA models are developed for conditional mean and both long and short memory models are used for conditional variance. We find that long memory models (particularly with normal distribution of innovations) perform more accurately. Also empirical results indicate that GARCH models have confidential performance with t-student innovation. In sample and out–of-sample Value at Risk calculation resulted by FIGARCH models are more accurate than those of generated by traditional GARCH, particularly in 2.5% critical region. JEL Classification: C22, C53, G15
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
غلامرضا کشاورز |
باقر صمدی |
نشانی اینترنتی
http://jte.ut.ac.ir/article_19983_68171699122aa2d8d78278c561bbd771.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/689/article-689-273042.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات