این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Sciences Islamic Republic of Iran، جلد ۲۰، شماره ۳، صفحات ۰-۰

عنوان فارسی Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group ۱۲
چکیده فارسی مقاله We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to the 9-(10-pyrene) nonanol/ultraviolet treatment were grown. These colonies were examined for intracellular location of Pex3p(1–40)-EGFP. By this method, we have isolated one CHO cell mutant, ZPEG403, which was found to belong to complementation group G (CG-G). Expression of the human peroxin, Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in ZPEG403 cells. Mutation and genomic DNA PCR analyses showed that, the dysfunction of Pex3p in ZPEG403, was due to one base (A) substitution in place of (G) in the first base of splicing site at the boundary of exon 6 and intron 6 of PEX3 gene, giving rise to remaining of all of intron 6, thereby inducing 81 bp insertion between positions 523–524 of PEX3 ORF, resulting in deletion of 200 amino acid residues from the C-terminus of Pex3p and a frame shift inducing both 18-amino-acid substitution and an early termination codon.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
چکیده انگلیسی مقاله We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to the 9-(10-pyrene) nonanol/ultraviolet treatment were grown. These colonies were examined for intracellular location of Pex3p(1–40)-EGFP. By this method, we have isolated one CHO cell mutant, ZPEG403, which was found to belong to complementation group G (CG-G). Expression of the human peroxin, Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in ZPEG403 cells. Mutation and genomic DNA PCR analyses showed that, the dysfunction of Pex3p in ZPEG403, was due to one base (A) substitution in place of (G) in the first base of splicing site at the boundary of exon 6 and intron 6 of PEX3 gene, giving rise to remaining of all of intron 6, thereby inducing 81 bp insertion between positions 523–524 of PEX3 ORF, resulting in deletion of 200 amino acid residues from the C-terminus of Pex3p and a frame shift inducing both 18-amino-acid substitution and an early termination codon.
کلیدواژه‌های انگلیسی مقاله CHO cell mutant, Peroxin, Peroxisome biogenesis, PEX3

نویسندگان مقاله k قایدی |



نشانی اینترنتی http://jsciences.ut.ac.ir/article_20099_ee484ea55aa5b84e0ee9f47bcf8858c3.pdf
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/513/article-513-275408.pdf
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات