این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 29 آذر 1404
Journal of Mining and Environment
، جلد ۱۴، شماره ۲، صفحات ۳۷۵-۳۸۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Artificial Neural Network Modeling as an Approach to Limestone Blast Production Rate Prediction: a Comparison of PI-BANN and MVR Models
چکیده انگلیسی مقاله
Rock blast production rate (BPR) is one of the most crucial factors in the evaluation of mine project's performance. In order to improve the production of a limestone mine, the blast design parameters and image analysis results are used in this work to evaluate the BPR. Additionally, the effect of rock strength on BPR is determined using the blast result collected. In order to model BPR prediction using artificial neural networks (ANNs) and multivariate prediction techniques, a total of 219 datasets with 8 blasting influential parameters from limestone mine blasting in India are collected. To obtain a high-accuracy model, a new training process called the permutation important-based Bayesian (PI-BANN) training approach is proposed in this work. The developed models are validated with new 20 blast rounds, and evaluated with two model performance indices. The validation result shows that the two model results agree well with the BPR practical records. Additionally, compared to the MVR model, the proposed PI-BANN model in this work provides a more accurate result. Based on the controllable parameters, the two models can be used to predict BPR in a variety of rock excavation techniques. The study result reveals that rock strength variation affects both the blast outcome (BPR) and the quantity of explosives used in each blast round.
کلیدواژههای انگلیسی مقاله
rock fragmentation, blasting improvement, soft computing models, model prediction evaluation, Machine learning
نویسندگان مقاله
Blessing Olamide Taiwo |
Department of Mining Engineering, Federal University of Technology, Akure, Nigeria
Gebretsadik Angesom |
Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia
Yewuhalashet Fissha |
Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia
Yemane Kide |
Department of Mining Engineering, Aksum University, Aksum, Tigray, Ethiopia
Enming Li |
School of Resources and Safety Engineering, Central South University, Changsha, China
Kiross Haile |
Ethiopian Ministry of Mines, Mineral Industry Development Institute, Addis Ababa, Ethiopia
Oluwaseun Augustine Oni |
Department of Mining Engineering, Federal University of Technology, Akure, Nigeria
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_2702_ed21882121fa576ed2980f9cd05e5c15.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات