این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Mining and Geo-Engineering، جلد ۵۷، شماره ۲، صفحات ۲۰۵-۲۱۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improvement of small scale mine blast operation: A comparative application of hunter-point artificial neural network, support vector machine, and regression analysis models
چکیده انگلیسی مقاله The blasting operation is one of the technologies used for breaking rock masses and reducing the rock mass into smaller sizes to improve transportation and further particle separation. The improvement of blast fragmentation supports the maximization of mining operation and productivity. Soft computing and regression model has been developed in this study to optimize small-scale dolomite blast operations in Akoko Edo, Nigeria. WipFrag software was used to analyze the results of 35 blasting rounds. As independent variables, one uncontrollable parameter and five controllable blast parameters were chosen to predict blast particle sizes using four mathematically motivated soft computing model approaches. The prediction accuracy of the developed models was tested using various model performance indices. The study revealed that rock strength influences blast fragmentation results, and based on the rock strength properties, the fragmentation block size increases with an increase in rock strength. The results of the model performance indices used for the evaluation of the proposed models showed that the modified Artificial Neural Network (ANN) called Hunter Point (HP-ANN) has the highest predictive accuracy. A new model evaluator was also developed in this study called the decision factor. Its application indicates that the HP-ANN model is the best model suitable for the prediction of blast fragment size distribution. Therefore, the developed models can be used to predict the blast result mean size (X50) and the 80% percentage passing size (X80) for mining engineering blasting practices.
کلیدواژه‌های انگلیسی مقاله Artificial Neural Network,Blasting,empirical modelling,Support vector machine,WipFrag software

نویسندگان مقاله Blessing Olamide Taiwo |
Federal University of Technology Akure, Mining Engineering, Nigeria.

Abduljeleel Ibidapo Ajibona |
Federal University of Technology Akure, Mining Engineering, Nigeria.

Kayode Idowu |
University of Jos, Mining Engineering, Nigeria.

Abdulkadir Sakariyau Babatunde |
School Mines, China University of Mining and Technology, Xuzhou China.

Bidemi Olaoluwa Ogunyemi |
Federal University of Technology Akure, Mining Engineering, Nigeria.


نشانی اینترنتی https://ijmge.ut.ac.ir/article_91158_65d1dc9ee386434864b4cd864c438f74.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات