این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Mining and Environment، جلد ۱۴، شماره ۳، صفحات ۷۵۵-۷۷۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Rate of Penetration Prediction in Drilling Operation in Oil and Gas Wells by K-nearest Neighbors and Multi-layer Perceptron Algorithms
چکیده انگلیسی مقاله The rate of penetration plays a key role in maximizing drilling efficiency, so it is essential for the drilling process optimization and management. Traditional mathematical models have been used with some success to predict the rate of penetration in drilling. Due to the high complexity and non-linear behavior of drilling parameters with the rate of penetration, these mathematical models cannot accurately and comprehensively predict the rate of penetration. Machine learning (ML) seems to be an attractive alternative to model this complicated physical process. This research paper introduces new data-driven models used to predict ROP using different parameters such as (depth, weight on bit (WOB), revolution per minute (RPM), Torque (T), standpipe pressure (SPP), flow in pump (pumping flow rate(Q), mud weight, hours on bit (HOB), revolutions on bit, bit diameter, total flow area (TFA), pore pressure, overburden pressure, and pit volume). Data-driven models are built using two different machine learning techniques, using 1771 raw real field data. The coding is built using the python programming language. The k-nearest neighbors (KNN) model predicting ROP for the training dataset show a correlation coefficient (R2) of 0.94. The multi-layer perceptron (MLP) model predicting ROP for the training dataset show a correlation coefficient (R2) of 0.98. We can conclude that MLP has a better accuracy, and removing outliers enhances model performance.
کلیدواژه‌های انگلیسی مقاله rate of penetration, Machine learning, Drilling, multilayer perceptron, K-Nearest Neighbors

نویسندگان مقاله Yahia ElSayed Khamis |
Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt

Shady Galal El-Rammah |
Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt

Adel M Salem |
Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez, Egypt


نشانی اینترنتی https://jme.shahroodut.ac.ir/article_2781_6c1ddb262961200dc7d94ee1b3cee03f.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات