این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۱، شماره ۲، صفحات ۱۶۱-۱۶۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
BRTSRDM: Bi-Criteria Regression Test Suite Reduction based on Data Mining
چکیده انگلیسی مقاله
Regression testing reduction is an essential phase in software testing. In this step, the redundant and unnecessary cases are eliminated, whereas software accuracy and performance are not degraded. So far, various researches have been proposed in regression testing reduction field. The main challenge in this area is to provide a method that maintain fault-detection capability while reducing test suites. In this paper, a new test suite reduction technique is proposed based on data mining. In this method, in addition to test suite reduction, its fault-detection capability is preserved using both clustering and classification. In this approach, regression test cases are reduced using a bi-criteria data mining-based method in two levels. In each level, the different and useful coverage criteria and clustering algorithms are used to establish a better compromise between test suite size and the ability of reduced test suite fault detection. The results of the proposed method have been compared to the effects of five other methods based on PSTR and PFDL. The experiments show the efficiency of the proposed method in the test suite reduction in maintaining its capability in fault detection.
کلیدواژههای انگلیسی مقاله
Test suite reduction, Software, data mining, Coverage criteria, Clustering
نویسندگان مقاله
Mohammad Reza Keyvanpour |
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Zahra Karimi Zandian |
Data Mining Lab, Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
Nasrin Mottaghi |
Data Mining Lab, Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_2746_8e8cd2ec17135fd58eccd932b5005fba.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات