این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
Molecular Biology Research Communications
، جلد ۱۲، شماره ۳، صفحات ۱۱۷-۱۲۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using several pseudo amino acid composition types and different machine learning algorithms to classify and predict archaeal phospholipases
چکیده انگلیسی مقاله
Phospholipases, as important lipolytic enzymes, have diverse industrial applications. Regarding the stability of extremophilic archaea’s proteins in harsh conditions, analyses of unusual features of their proteins are significantly important for their utilization. This research was accomplished to in silico study of archaeal phospholipases’ properties and to develop a pioneering method for distinguishing these enzymes from other archaeal enzymes via machine learning algorithms and Chou’s pseudo-amino acid composition concept. The non-redundant sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings algorithms. Also, different Chou’s pseudo-amino acid composition modes were performed and then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity (96%), Matthews’s correlation coefficient (0.92), and accuracy (96%). The present investigation yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets PseAAC and OET-KNN machine learning algorithm.
کلیدواژههای انگلیسی مقاله
Archaea, Phospholipases, Machine learning, Chou’s PseAAC
نویسندگان مقاله
Nour Samman |
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
Hassan Mohabatkar |
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
Parisa Rabiei |
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
نشانی اینترنتی
https://mbrc.shirazu.ac.ir/article_7102_c13982c583ff75af6959f16b85cec9ae.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات