این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۱۵، شماره ۲، صفحات ۲۹-۴۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Arabic Handwritten Recognition Using Hybrid CNN, HMM and an Intelligent Network Based on Dentate Gyrus of the Brain
چکیده انگلیسی مقاله Handwritten character recognition has occupied a substantial area due to its applications in several fields and is used widely in the modern world. Handwritten Arabic recognition is a major challenge because of the high similarity in its characters and its various writing styles. Deep learning algorithms have recently shown high performance in this area. The problem is that a deep learning algorithm requires large datasets for training. To overcome this problem, an efficient architecture is presented in this study, which comprises Hidden Markovian Model for character modeling, Convolutional Neural Network for feature extraction, and an intelligent network for recognition. The proposed network is modeled based on the dentate gyrus of the hippocampus of the brain. This part of the brain is responsible for identifying highly overlapping samples. The handwritten Arabic alphabet is characterized by this high overlap. Modeling the functionality of the dentate gyrus can improve the accuracy of the handwritten Arabic characters. Experiments are done using IFN/ENIT, CMATERdb3.3.1 and, MADBase datasets. The proposed approach outperformed recently published works using the same dataset. Although in all the experiments, a character error rate (CER) of less than 1.63 was obtained, the CMATERdb3.3.1 dataset resulted in a CER of 0.35. Compared with the convolutional neural network, the proposed network showed superiority in recognizing patterns with high noise.
کلیدواژه‌های انگلیسی مقاله Handwritten Arabic recognition, Convolutional Neural Network, Hidden Markovian Model, Dentate Gyrus, Overlap.

نویسندگان مقاله | Nazal Modhej
Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran


| Mohammad Teshnehlab
Department of Electrical Engineering of K. N. Toosi University of Technology, Tehran, Iran


| Azam Bastanfard
Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran


| Somayeh Raiesdana
Department of Biomedical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4439-1&slc_lang=en&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده شبکه و امنیت
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات