این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Information and Communication Technology Research (IJICT، جلد ۱۵، شماره ۲، صفحات ۴۲-۴۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Convolutional Neural Network Based Human Activity Recognition using CSI
چکیده انگلیسی مقاله Human activity recognition (HAR) has the potential to significantly impact applications such as health monitoring, context-aware systems, transportation, robotics, and smart cities. Because of the prevalence of wireless devices, the Wi-Fi-based approach has attracted a lot of attention among other existing methods such as sensor-based and vision-based HAR. Wi-Fi devices can be used to distinguish between daily activities such as "walking," "running," and "sleeping," which affect Wi-Fi signal propagation. This paper proposes a Deep Learning method for HAR tasks that makes use of channel state information (CSI). We convert the CSI data to RGB images and classify the activity recognition using a 2D-Convolutional Neural Network (CNN). We evaluate the performance of the proposed method on two publicly available datasets for CSI data. Our experiments show that converting data into RGB images improves performance and accuracy compared to our previous method by at least 5%.
کلیدواژه‌های انگلیسی مقاله Activity Recognition, Channel State Information, Convolutional Neural Network, Deep Learning, WiFi.

نویسندگان مقاله | Hossein Shahverdi
Cognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.


| Reza Shahbazian
Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, Italy


| Parisa Fard Moshiri
CCognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.


| Reza Asvadi
Cognitive Telecommunication Research Group, Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran


| Seyed Ali Ghorashi
Department of Computer Science & Digital Technologies, School of Architecture, Computing, and Engineering, University of East London, London, UK.



نشانی اینترنتی http://ijict.itrc.ac.ir/browse.php?a_code=A-10-4379-1&slc_lang=other&sid=1
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده other
موضوعات مقاله منتشر شده فناوری اطلاعات
نوع مقاله منتشر شده پژوهشی
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات