این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۶، صفحات ۱۰۹-۱۱۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Large scale objects thermography and thermal imaging survey: Datasets and applications
چکیده انگلیسی مقاله
Due to machine learning-based infrared image and video collections, which enable computers to detect and categorize images with increasing accuracy, the field of image identification has experienced a revolution. This comprehensive research presents an overview of the most current advancements in the infrared image and video collections for computer vision and artificial intelligence. It has largely focused on the infrared picture and video collections that have been collected and categorized for computer vision applications such as object identification, object segmentation and classification, and motion detection. This article covers some of the most well-known machine learning methods, including deep learning, convolutional neural networks, support-vector machines, and decision trees. The basic problems with image identification are examined, and only a few of them include data augmentation, feature extraction, and picture segmentation. We also discuss some recent developments in the area of image identification, including ground-breaking deep learning methods like adversarial training and transfer learning. The discussion ends with a discussion of possible uses and the promise of machine learning for picture identification. Because it analyzes state of the art in machine learning for picture identification in-depth, this survey study is a vital resource for academics and entrepreneurs. We make a distinction between publicly accessible collections and those that are maintained in private, based on the various sensor types, image resolution, size, and research effort within that range. Include a glossary of words, including those for infrared radiation, infrared detectors, and infrared optics, that are crucial to comprehending infrared imaging, along with a description of their applications. This article explores the group's overall statistical relevance from a number of different perspectives. Researchers working in computer vision and artificial intelligence who are interested in managing spectra outside of the optical field might use this survey as a reference.
کلیدواژههای انگلیسی مقاله
Artificial intelligence, deep-learning, convolutional-neural-networks, learning-based infrared, machine learning
نویسندگان مقاله
Ahmed Abdulsatar Kareem |
Computer Science Department, College of Science, University of Diyala, Diyala, Baqubah, Iraq
Adil Al-Azzawi |
Computer Science Department, College of Science, University of Diyala, Diyala, Baqubah, Iraq
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7631_2a3fde7a4c0e429670f0451c0f07262d.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات