این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
پژوهش های اقلیم شناسی
، جلد ۱۳۹۹، شماره ۴۴، صفحات ۱۲۱-۱۳۲
عنوان فارسی
کاربرد مدل سری زمانی برای تخمین میزان بارش ماهانه در استان کرمانشاه
چکیده فارسی مقاله
پیش بینی فرایندهای آب و هوایی ابزار مناسبی در اختیار مدیران حوضه های مختلف قرار می دهد، تا با در نظر گرفتن این پیش بینی ها، سیاستهای آینده را در جهت بهینه نمودن صرف هزینه ها و امکانات بهره وری حداکثر طرح ریزی کنند. پیش بینی بارش برای اهداف مختلفی نظیر برآورد سیلاب، خشکسالی، مدیریت حوضه آبریز، کشاورزی و ... دارای اهمیت بسیاری است. در این تحقیق، جامعه آماری شامل میزان بارش در ایستگاههای سینوپتیکی استان کرمانشاه، کنگاور، سرپل ذهاب و اسلام آباد غرب میباشد. روش مطالعه به صورت مقطعی و حجم نمونه نیز تمام دادههای میزان بارش طی سالهای 1365 تا 1397 میباشد. به منظور تجزیه و تحلیل دادهها از روش آریما برای برازش مدلسازی سری زمانی و در انتها بعد از آزمون مدلهای موجود بهترین مدل برای پیش بینی میزان بارش تعیین گردید. نتایج بررسیها نشان داد که مدل سری زمانی آریما بهترین کارایی را داشته و روند کاهشی بارش به اندازه 2/0 را خواهد داشت. در بررسیهای حاضر با استفاده از دادههای 32 ساله (97-65) ایستگاه کرمانشاه، اسلام آباد، کنگاور و سرپل ذهاب و همچنین مدلهای سری زمانی اقدام به مدلسازی و پیش بینی بارش گردید. براساس نتایج بدست آمده از نمودارهای خود همبستگی و خود همبستگی جزیی، بهترین مدل برازش شده بر دادهها مدل بود. در نهایت با توجه به تصادفی بودن و همچنین تاخیر زمانی خارج از محدوده صفر براساس باقیمانده خود همبستگی جزیی و باقیمانده خود همبستگی در مدل پیش بینی دادهها کمتر از 05/0 میباشد. پس مدل پیش بینی قابل اطمینان برآورد شد. و براساس مدل برازش شده بارش به اندازه 2/0 روند کاهشی را خواهد داشت.
کلیدواژههای فارسی مقاله
بارش ماهانه، سری زمانی، کرمانشاه، پیش بینی،
عنوان انگلیسی
Application of time series model to estimate monthly rainfall in Kermanshah province
چکیده انگلیسی مقاله
Introduction: In recent years, limited water resources to supply water for agricultural and non-agricultural needs have caused many problems and rain is one of the important sources of water supply. On the other hand, rainfall is one of the most important components of input to hydrological systems that its study and measurement in most cases is necessary for studies of runoff, drought, groundwater, flood, sediment, etc. Therefore, forecasting and estimating rainfall for each region and watershed is considered as one of the important climatic parameters in the optimal use of water resources. One of the methods of estimating and predicting precipitation is the use of time series. Materials and methods: In this study, the statistical population includes the amount of precipitation in synoptic stations of Kermanshah, Kangavar, Sarpole-Zahab and Islamabad -Gharb provinces. The data has been prepared from the meteorological website at www.kermanshahmet.ir. The study method is cross-sectional and the sample size is all rainfall data during the years 1986 to 2018. In order to analyze the data in this study, spss16 and minitab18 statistical software for time series modeling fitting and finally after testing the existing models, the best model for predicting precipitation was determined. Results and discussion: In order to analyze the data from Arima method for fitting time series modeling and finally after testing the existing models, the best model for predicting precipitation was determined. The results showed that Arima time series model has the best performance and will have a decreasing trend of precipitation by 0.2. In the present studies, using 32-year data (1986-2018) of Kermanshah, Islamabad, Kangavar and Sarpole-Zahab stations as well as time series models, precipitation was modeled and predicted. Based on the results of autocorrelation and partial autocorrelation diagrams, the best model fitted to the data was the model Arima(2,1,1). Finally, due to randomness and time delay outside the range of zero based on partial autocorrelation residual and residual autocorrelation in the data prediction model is less than 0.05. The model was then estimated to be reliable. And according to the fitted model, precipitation will have a decreasing trend of 0.2. Conclusion: The analysis of random phenomena in the realm of statistics and probability is a subset of hydrology and meteorology. Due to the fact that meteorological processes are random, so the basis for the analysis of these phenomena is meteorology, statistics and probability. Accordingly, time series are used. It is natural that the existence of appropriate statistical data in the study area as input to models in processing problems and receiving reliable outputs is very important and effective. In the present studies, using 32-year data (1986-2018) of Kermanshah, Islamabad, Kangavar and Sarpole-Zahab stations as well as time series models, precipitation was modeled and predicted in the software minitab18.Based on the results obtained from the autocorrelation and partial autocorrelation diagrams, the best fit model on the data was the model Arima(2,1,1). Finally, due to randomness and time delay (Lag-time) outside the range of zero based on the residual of the partial autocorrelation function (PACF ) and the residual of the autocorrelation function (ACF ) in the data prediction model is less than 0.05, so the model Reliable forecast was estimated and according to the fitted model, precipitation will decrease by 0.2.
کلیدواژههای انگلیسی مقاله
بارش ماهانه, سری زمانی, کرمانشاه, پیش بینی
نویسندگان مقاله
لیلا تیموری یگانه |
دانش آموخته آمار ریاضی، دانشگاه رازی، کرمانشاه
مریم تیموری یگانه |
دانشجوی دکترای سازههای آبی دانشگاه رازی، کرمانشاه
نشانی اینترنتی
https://clima.irimo.ir/article_127739_9a3cf82296bfb5ce2cb76d25c6de008c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات