این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
ژئوفیزیک ایران، جلد ۱۶، شماره ۳، صفحات ۳۷-۵۵

عنوان فارسی پس‌پردازش برونداد مدل WRF برای پارامتر آب بارش‌شو با استفاده از داده‌های ماهواره‌ای
چکیده فارسی مقاله آب بارش‌شو (Precipitable Water) که بخش مهمی از چرخه آب در جوّ است، برای شناخت رفتار بخار آب جوّ و فرایندهای مرتبط، متغیری درخور توجه و بنیادین در مطالعات آب‌شناسی و هواشناسی به‌‌شمار‌می‌آید. ازآنجاکه در مناطقی که ایستگاه جوّ بالا ندارند، محاسبه این پارامتر به‌راحتی و بدون استفاده از تجهیزاتی از قبیل GPS، ماهواره و رادار امکان‌پذیر نیست، هدف از این پژوهش، پس‌پردازش برونداد مدل عددی WRF (Weather and Research Forcast) برای پارامتر آب بارش‌شو در نقاط بدون ایستگاه جوّ بالا بر اساس داده‌های ماهواره‌ای است. در ابتدا، آب بارش‌شو چند ایستگاه جوّ بالا در کشور با پارامتر نظیر آن در ماهواره‌های هواشناسی نسل دوم MSG1(IODC) و ماهواره چینی فنگ یون (FY-2E) در یک دوره دوساله مقایسه شد و داده‌های ماهواره هواشناسی با کمترین جذر میانگین مربع خطا جهت مقادیر هدف برای پس‌پردازش مدل WRF انتخاب شد. پس از آن، پارامتر آب بارش‌شو مدل WRF با پارامتر مستخرج از ماهواره انتخابی METEOSAT8 و رادیوگمانه و با استفاده از الگوریتم ژنتیک و پالایه کالمن پس‌پردازش شد. با اجرایی کردن این رهیافت و همگرایی زیاد مقادیر همبستگی ماهواره منتخب و مدل پس‌پردازش‌شده با مقادیر همبستگی رادیوگمانه و مدل تصحیح‌شده، نتایج نشان داد که با اِعمال پالایه کالمن (Kalman filter)، داده‌های ماهواره هواشناسی نسخه 8 METEOSAT8(IODC) می‌تواند جایگزین داده‌های رادیوگمانه در نقاط بدون ایستگاه جوّ بالا برای آموزش مدل پیشنهادی جهت پس‌پردازش پارامتر آب بارش‌شو مدل عددی WRF باشد.
کلیدواژه‌های فارسی مقاله آب بارش‌شو، پس‌پردازش، مدل عددی WRF، داده ماهواره،

عنوان انگلیسی Post–processing of WRF model for precipitable water using meteorological satellite data
چکیده انگلیسی مقاله Precipitable water (PW) is an important part of the water cycle in the atmosphere. This variable plays a significant role in hydrological and meteorological studies to understand the behavior of water vapor and the involved processes. One of the management tools in this area is knowledge of the Total Precipitated Water content (TPW) in the atmosphere. This quantity can also be used as a meteorological index for accurate prediction of atmospheric parameters including rainfall and runoff estimates. PW is the amount of vertically integrated water vapor and can be expressed in g/cm2, or as the height of an equivalent column of liquid water in centimeters. The traditional technique for PW measurement is to launch radiosondes, normally twice a day. This method is not only expensive but also poor in both spatial coverage and temporal resolution. Temporal changes in atmospheric water vapor occur rapidly and water vapor measurements by radiosondes do not satisfy the needs of research for a variety of variation scales of atmospheric water vapor. In past years, the emerging ground-based Global Positioning System (GPS) has opened the possibility of improved monitoring of atmospheric humidity. Beginning from the 1990s, an observational technique based on the Global Navigation Satellite System (GNSS), which is sensitive to the spatial and temporal distribution of the water vapor content in the atmosphere, has made it possible to retrieve precise and continuous estimates of PW. In recent years, studies have been conducted on the use of satellite data and GPS data to estimate this parameter. The purpose of this research is to evaluate the post-processing of WRF model for PW using meteorological satellite data, neural network and Kalman filter. This parameter cannot be easily calculated without the use of equipment such as GPS, satellite, radiosonde station and radar. In this research, we attempt to eliminate the systematic error of a PW parameter obtained through the WRF numerical model in the absence of measurement data. In the first step, we compare the rainfall water for two stations in Iran including Mashhad and Tehran with the TPW parameter measured by MSG1(IODC) and FY-2E satellites for about two years. Then, the WRF model results are post-processed based on the observational data to educate the neural network model using the ANFIS implementation with genetic algorithm training. In second step, the Kalman filter was applied to the satellite data modified by genetic algorithm. The results were improved and the correlation coefficient was to 0.987 and the RMSE error reduced to 1.1. Results show that by implementing this approach and converging on the correlation values of the selected satellite and the post-processed model to the correlation values of the modified model, the results showed that the meteorological satellite data METEOSAT8 (IODC) can be used as an alternative of radiosonde data in places without high atmosphere station to teach the proposed model for post-processing of PWV parameter in WRF numerical model.
کلیدواژه‌های انگلیسی مقاله آب بارش‌شو, پس‌پردازش, مدل عددی WRF, داده ماهواره

نویسندگان مقاله فرحناز تقوی |
دانشیار گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

مجتبی جلالی |
دانشجوی دکترای گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، تهران، ایران


نشانی اینترنتی https://www.ijgeophysics.ir/article_148488_cd68c605dd212c85f1191b5bc2daaa42.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات