این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
تحقیقات منابع آب ایران، جلد ۱۷، شماره ۲، صفحات ۲۳۵-۲۴۸

عنوان فارسی توسعه یک مدل جدید ترکیبی احتمالاتی کلاس مبنا برای پیش‌بینی بارش ماهانه
چکیده فارسی مقاله پیش‌بینی بارش ماهانه با دقت زیاد یکی از چالش‌های مهم در علوم هیدرولوژی و هواشناسی می‌باشد و در برنامه‎ریزی منابع آب از اهمیت بالایی برخوردار است. در تحقیق حاضر، یک مدل ترکیبی احتمالاتی کلاس مبنا (CPHM) بر پایه ترکیب روش‌های کلاس‎بندی و توابع کرنل احتمالاتی توسعه داده شده است که با استفاده از آن می‌توان بر اساس بارش‌های فصلی (ورودی مدل)، بارش ماهانه (خروجی مدل) را با دقت بالایی برای تمامی ‌ماه‌های یک فصل پیش‌بینی نمود. برتری‌های این مدل نسبت به روش‌های مرسوم پیش‌بینی ماهانه بارش، از یک سو قابلیت آن برای پیش‌بینی بارش ماهانه برای فصلی نظیر پاییز در ایران می‌باشد که ماه‌های قبل از آن (در تابستان) بدون بارش است، و از سوی دیگر قابلیت آن برای پیش‌بینی هم‌زمان بارش برای تمامی ماه‌های یک فصل می‌باشد که از نظر مدیریت منابع آب بسیار ارزشمند است. از این‌رو، به منظور ارزیابی کارآیی این مدل، مدل مذکور برای پیش‌بینی بارش ماهانه پاییزه در حوضه آبریز کرخه که دربرگیرنده جلگه حاصلخیز خوزستان است، بکار گرفته شد و عملکرد آن با مدل شبکه عصبی مصنوعی (ANN) با ساختار بهینه شده نیز مورد مقایسه قرار گرفت. نتایج نشان‌دهنده عملکرد بالای مدل CPHM و برتری آن در مقایسه با مدل بهینه شده ANN برای پیش‌بینی بارش در هر سه ماه فصل پاییز می‌باشد؛ به‌طوری که متوسط دقت نتایج در مرحله صحت‎سنجی این مدل برای سه ماه پاییز بر اساس شاخص‌های نش- ساتکلیف (NSE)، جذر میانگین مربعات خطا (RMSE) و ضریب همبستگی پیرسون (PCC) به ترتیب برابر با 0/7، 12 و 0/86 می‌باشد.
کلیدواژه‌های فارسی مقاله پیش‌بینی بارش ماهانه، مدل ترکیبی، تابع کرنل، طبقه‌بندی، کرخه، CPHM،

عنوان انگلیسی Developing a New Class-based Probabilistic Hybrid Model for Monthly Precipitation Forecasting
چکیده انگلیسی مقاله High accuracy forecasting of monthly precipitation is one of the major challenges in hydrology and meteorology and is of great importance in water resources planning. In the current research a Class-Based Probabilistic Hybrid Model (CPHM) has been developed on the basis of a hybrid of classification methods and probabilistic kernel functions. Using this method, monthly precipitation (model output) can be forecasted more accurately for all months of a season according to seasonal precipitation (model input). The superiorities of this model over conventional monthly rainfall forecasting methods are on the one hand, its capability for monthly precipitation forecasting for a season such as autumn in Iran the previous months of which in summer have no precipitation, and on the other hand, the simultaneous prediction of precipitation for all months of a season which is valuable in terms of water resources management. In order to evaluate this model, it was applied to forecast autumnal monthly precipitation for Karkheh basin which includes Khuzestan fertile plain and its efficiency was compared to an optimized structural ANN model. Results revealed a high performance for the developed CPHM model while it was also superior to ANN model for its precipitation forecasts for all three months of autumn. The average accuracy of the model resulted from validation phase for three autumn months based on Nash-Sutcliff (NSE), Root Mean Square Error (RMSE), and Pearson correlation coefficient (PCC) indices were 0.7, 12, and 0.86, respectively.
کلیدواژه‌های انگلیسی مقاله پیش‌بینی بارش ماهانه, مدل ترکیبی, تابع کرنل, طبقه‌بندی, کرخه, CPHM

نویسندگان مقاله فرشته مدرسی |
استادیار گروه علوم و مهندسی آب دانشگاه فردوسی مشهد، مشهد، ایران.


نشانی اینترنتی https://www.iwrr.ir/article_136372_03ddc445d3b327a9ca9326616af06366.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات