این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
رایانش نرم و فناوری اطلاعات
، جلد ۱۰، شماره ۲، صفحات ۸۲-۹۹
عنوان فارسی
ترکیب مدلهای پیش بینی و روشهای اکتشافی برای جایگذاری ماشینهای مجازی با هدف کاهش نقض توافق سطح سرویس در محیط ابر
چکیده فارسی مقاله
امروزه با افزایش مراکز داده ابر مصرف برق افزایش یافته و مدیریت زیرساخت ابر نیز پیچیدهتر شده است. از طرف دیگر برآورده کردن نیازهای کاربران ابر از اهداف مهم در زیرساخت ابر میباشد. فرآیند تعیین وضعیت بار ماشینهای فیزیکی و جایگذاری ماشینهای مجازی روی ماشینهای فیزیکی مناسب میتواند مصرف انرژی را کاهش دهد و از نقض توافق سطح سرویس کاربران جلوگیری کند. برای حل اینگونه مسائل، یک راهکار جایگذاری ماشینهای مجازی با توانایی پیشبینی مورد نیاز است تا ماشینهای مجازی را به طور کارا در زمان اجرا در میزبانهای مناسب قرار دهد. راهکارهای فعلی عمدتاً از یک مدل پیشبینی برای پیشبینی بار ماشینهای فیزیکی استفاده کردهاند و یا اکثراً تنها به موضوع پیشبینی بار میزبانها پرداختهاند و مسئله قرارگیری ماشینهای مجازی را در نظر نگرفتهاند. هدف این تحقیق ارائه یک راهکار مدیریت منابع ابر است که با استفاده از ترکیب مدلهای پیشبینی رگرسیون، میانگین متحرک و هموارسازی نمایی ساده جهت شناسایی ماشینهای فیزیکی فرابار و با استفاده از روشهای اکتشافی مبتنی بر مصرف انرژی، بهرهوری پردازنده، تعداد ماشینهای مجازی و حافظه جهت تعیین ماشین فیزیکی مناسب برای جایگذاری ماشینهای مجازی مهاجر بین کاهش تخطی در توافق سطح سرویس و کاهش مصرف انرژی مصالحه برقرار کند. برای ارزیابی مدل پیشنهادی از شبیهساز cloudsim نسخه 3.0.3 استفاده شده است. نتایج شبیهسازی نشان میدهد که مدل ارائه شده در مقایسه با روشهای مشابه به طور میانگین تخطی از توافق سطح سرویس، مصرف انرژی و تعداد مهاجرتهای ماشینهای مجازی را به ترتیب 45.65%، 28.96 % و 46.49% کاهش داده است.
کلیدواژههای فارسی مقاله
محیط ابر، ماشین مجازی، پیشبینی، جایگذاری، ماشین فیزیکی،
عنوان انگلیسی
Combining predictive models with heuristic methods for VM placement to reduce SLA violations in the cloud environment
چکیده انگلیسی مقاله
Today, with the rise of cloud data centers, power consumption has increased and cloud infrastructure management has become more complex. On the other hand, meeting the needs of cloud users is an important goal in cloud infrastructure. The process of determining the load status of physical machines and placing virtual machines on suitable physical machines can reduce energy consumption and prevent service level agreement violations. To address these issues, a virtual machine placement solution with a prediction capability is required to effectively place virtual machines in the proper hosts at runtime. The aim of this study is to provide a cloud management strategy that uses regression, moving average and simple exponential smoothing predictive models to identify overloaded physical machines and heuristic methods based on energy consumption, CPU utilization, number of virtual machines and memory to determine the appropriate physical machine for virtual machine placement, so provides a proper trade-off between reducing service level agreement violations and energy consumption and also decreases the number of virtual machine migrations. The cloudsim simulator version 3.0.3 has been used to evaluate the proposed model. The simulation results show that the proposed model averagely reduced the service level agreement violations by 45.65%, energy consumption by 28.96% and the number of virtual machine migrations by 46.49% compared to similar methods.
کلیدواژههای انگلیسی مقاله
محیط ابر, ماشین مجازی, پیشبینی, جایگذاری, ماشین فیزیکی
نویسندگان مقاله
نگین نجفی زادگان |
دانشکده مهندسی کامپیوتر و فناوری اطلاعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین،ایران.
اسلام ناظمی |
دانشکده مهندسی برق و کامپیوتر، دانشگاه شهید بهشتی، تهران، ایران
وحید خواجه وند |
دانشکده مهندسی کامپیوتر و فناوری اطلاعات، واحد قزوین، دانشگاه آزاد اسلامی، قزوین،ایران.
نشانی اینترنتی
https://jscit.nit.ac.ir/article_132347_0de95a37f922e6abe72227d2cabbf6c8.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات