این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
ماشین بینایی و پردازش تصویر، جلد ۱۰، شماره ۱، صفحات ۱۷-۳۱

عنوان فارسی ارائه یک روش دو جریانه مبتنی بر ویژگی های مکمل سنتی و عمیق برای تشخیص فعالیت انسان در ویدئو
چکیده فارسی مقاله تشخیص فعالیت انسان، امروزه به ­عنوان یک حوزه مهم در کاربردهای مختلفی مورد استفاده قرار گرفته است و مورد توجه بسیاری از محققان حوزه بینایی ماشین است تا بتوانند فعالیت اجرا شده در یک ویدئو را با دقت بالا طبقه ­بندی نمایند. در این مقاله یک روش دو جریانه با ساختاری جدید معرفی می­گردد که از دو ویژگی­ مکانی در هر دو جریان استفاده می­کند به­ گونه ­ای که این ویژگی­ها بتوانند به پوشش نقاط ضعف همدیگر بپردازند. استفاده از این ساختار در نهایت می­تواند به صورت دقیق­تری منجر به پیش­بینی برچسب فعالیت شود. در جریان اول ضرایب موجک با چندریزگی مناسب و در جریان دیگر ویژگی­های عمیق از قاب­ها استخراج می­شوند. ویژگی­های حاصل در دو نقشه ویژگی­های مکانی قرار می­گیرند و با استفاده از یک شبکه عمیق جدید تغییرات زمانی در نقشه­ها یاد گرفته می­شوند و با ترکیب اطلاعات طبقه بندی دو جریان برچسب نهایی تعیین می­گردد. دقت روش پیشنهادی روی 3 مجموعه داده واقعی UCFYT، UCF-Sport، و JHMDB برابر با 98.7، 99.83 و 92.86 بوده که عملکرد روش به طور میانگین نسبت به بهترین روش معرفی شده قبلی 4.6 درصد بهتر است.
کلیدواژه‌های فارسی مقاله بازشناسایی شخص، بازیابی شخص، وفق‌دهی دامنه‌، یادگیری عمیق،

عنوان انگلیسی A two-stream action recognition method based on complementary traditional and deep features
چکیده انگلیسی مقاله Today, human action recognition as an important research field is used in different applications and many computer-vision researches have focused on this area to improve recognition accuracy. In this paper, a two-stream method is introduced incorporating a new structure including two spatial features to cover their defects. Utilizing this structure leads to better performance finally. In the first stream, wavelet coefficients of key-frames with proper multi-resolution are extracted, and deep features of these key-frames are also extracted to be used in the other stream. The features in each stream are gathered in a spatial feature map. The temporal changes in both streams are learnt using a new deep network and the classification information of these streams are combined to achieve an accurate action label. The proposed method is examined on three challenging datasets as UCFYT, UCF-sport, and JHMDB with real videos which its accuracy on these datasets is 98.7, 99.83, and 92.86, respectively. The proposed method has about 4.6 percent better performance rather than the best previously introduced method on average.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله عاطفه مرادیانی |
دانشجوی کارشناسی ارشد مهندسی کامپیوتر، گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

محسن رمضانی |
گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

فردین اخلاقیان طاب |
گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

رحمت الله میرزایی |
گروه مهندسی برق، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران


نشانی اینترنتی https://jmvip.sinaweb.net/article_154176_729db704d5038e1645d36ea9f0e5ebe9.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات