این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
ماشین بینایی و پردازش تصویر، جلد ۸، شماره ۳، صفحات ۶۹-۸۱

عنوان فارسی استفاده از میدان های عصبی پویا در یک الگوریتم بینایی ماشین به منظور ردگیری همزمان اهداف
چکیده فارسی مقاله ردگیری همزمان چند شیء یکی از موضوعات مهم در زمینه بینایی ماشین و پایه کاربردهای بسیاری مانند انواع سامانه ­های نظارتی انسانی و حیوانی است. از اصلی­ترین چالش­ های الگوریتم­ های این حوزه، مرتبط­ سازی داده­ ها به ویژه هنگام بروز انسداد می­ باشد. از آنجا که انسان­ ها عملکرد مناسبی در مواجهه با این چالش دارند، انتظار می­رود استفاده از الگوریتم­ های ملهم از مغز در ردگیری همزمان اهداف بتواند به بهبود کارایی این گونه از سامانه ­ها منجر شود. میدان­ های عصبی پویا سازگاری بالایی با عملکرد نورونی و شناختی مغز انسان دارند. ما در این مقاله از این میدان­ ها بهره بردیم تا مانند حافظه کاری انسان در نگهداری و پردازش اطلاعاتی مانند مکان اشیاء، جهت و سرعت آن­ها ایفای نقش کنند. استخراج این اطلاعات با استفاده از شگردهای بینایی ماشین صورت می­گیرد. ارزیابی این روش با مقایسه عملکرد آن با روش­های اخیرا توسعه داده شده روی مجموعه داده حاوی ویدیوهای ضبط­ شده از حرکات آزادانه لاروهای قزل­ آلا که در دسترس همگان قرار دارد انجام شده است. نتایج نشان داد که روش پیشنهادی نه تنها از روش­های رقیب عملکرد بهتری دارد، بلکه تقریبا در همه موارد به ویژه بعد از انسداد قادر است مرتبط ­سازی داده ­ها را به درستی انجام دهد.
کلیدواژه‌های فارسی مقاله ردگیری همزمان اشیاء، میدان های عصبی پویا، مرتبط سازی داده ها، انسداد، ویدیو های میکروسکوپی،

عنوان انگلیسی A Computer Vision Algorithm based on Dynamic Neural Fields for Multiple-Object Tracking
چکیده انگلیسی مقاله Tracking multiple objects (MOT) is an important topic in almost all computer vision-related areas. One of the most vital challenges in front of MOT’s algorithms is data association, particularly when partial or complete occlusions occur. On the other hand, the human can handle this challenge in everyday scenarios for example while driving a car on a highway or riding a bicycle. Accordingly, we used a brain-inspired method to propose an MOT algorithm that can overcome the above challenge. The proposed method is based on dynamic neural field as a brain-inspired algorithm that can mimic both neural and cognitive functions of the brain. Besides, we benefited from computer vision techniques to find targets and extract features such as their locations, directions, and velocities. We applied our method on an online dataset containing videos recorded from natural movements of zebrafish larvae. Evaluation results using two metrics MOTA and MOTP showed that the proposed method has a promising performance compared to the state-of-the-art algorithms. It can associate all information correctly both in the presence and absence of occlusion events.
کلیدواژه‌های انگلیسی مقاله ردگیری همزمان اشیاء, میدان های عصبی پویا, مرتبط سازی داده ها, انسداد, ویدیو های میکروسکوپی

نویسندگان مقاله شیوا کامکار |
دانش آموخته دکتری مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه صنعتی خواجه نصیرالدین طوسی

حمید ابریشمی مقدم |
گروه مهندسی پزشکی دانشکده مهندسی برق دانشگله صنعتی خواجه نصیر

رضا لشگری |
پژوهشکده علوم و‌ فناوری های پزشکی، دانشگاه شهید بهشتی


نشانی اینترنتی https://jmvip.sinaweb.net/article_129449_55b4147e9d513c0d845cc0bd3a69171a.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات