این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
دوشنبه 24 آذر 1404
Journal of Petroleum Science and Technology
، جلد ۱۲، شماره ۴، صفحات ۵۳-۶۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Analysis of Deep Neural Network Model in Recognition of Mud Cuttings Image for Practical Applications
چکیده انگلیسی مقاله
Traditional mud logging cuttings identification relies on professionals to carry out visual identification and analysis based on experience. The workload is large and subject to the influence of subjectivity, which is likely to cause errors in information extraction and result analysis. Based on applying deep learning theory in image processing technology, ResNet, DenseNet, and SqeezeNet deep neural network models were built according to the classification of cuttings images. The deep neural network models were used to identify the pictures of cuttings subdivision classification. The evaluation indexes, such as stability, robustness, and recognition effect of different models, were compared and analyzed, and the three models were selected according to the best. The results showed that under the Top-2 standard, the deep neural network model was more accurate in recognizing composite cuttings images. In contrast, the SqeezeNet 1_0 model had the best performance in identifying cuttings after synthesizing different evaluation indicators. The final recognition rate of the optimized SqeezeNet 1_0 model reaches 99.48%. In addition, the obtained SqeezeNet 1_0 network model can effectively identify sandstone, mudstone, and conglomerate cuttings on-site and can be extended to the daily identification of composite cuttings.
کلیدواژههای انگلیسی مقاله
Deep Learning, deep neural network models, image recognition, cuttings images, mud logging
نویسندگان مقاله
Zhiming Zhao |
Department of Petroleum Engineering, Panjin Vocational and Technical College, Panjin, Liaoning, China
Wenyang Gao |
Department of Petroleum Engineering, Panjin Vocational and Technical College, Panjin, Liaoning, China
Jiabiao Chang |
CCDC Changqing General Drilling Company, Xi’an, Shaanxi, China
Yiming Chen |
Department of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun, Liaoning, China Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
Qiushi Zhang |
Department of Oil and Gas Engineering, Liaoning Petrochemical University, Fushun, Liaoning, China
Bo Wang |
Faculty of Engineering and Applied Science, University of Regina, Regina, Canada
نشانی اینترنتی
https://jpst.ripi.ir/article_1326_57b864417d87eeca566e1d37e0a945c7.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات