این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 2 دی 1404
پردازش علائم و داده ها
، جلد ۲۰، شماره ۲، صفحات ۱۴۵-۱۶۲
عنوان فارسی
تعیین ضرایب شاخص های ارزیابی عملکرد شعب با استفاده از الگوریتم ژنتیک دوهدفه پیشنهادی
چکیده فارسی مقاله
با اختصاص بخش قابل توجهی از بودجه مربوط به حقوق و دستمزد بانکها به شیوه پرداخت مبتنی بر عملکرد توجه به پتانسیلهای کسب و کاری شعب اهمیت یافته است. از این رو مسئله تعییـن ضرایب اهمیت شاخصهای ارزیابی عملکرد مبتنی بر فضای کسب و کاری به یک چالش برای مدیران بانکی تبدیل شده است. در ایـن مقاله مسئله بهینهسازی ضرایب اهمیت شاخصهای ارزیابی عملکرد شعب در یکی از بانکهای دولتی ایران با در نظرگرفتن فضای کسب و کاری شعب مورد بررسی قرار گرفته است. برای این منظور یک رویکرد دو مرحلهای ارائه شده در گام اول از یک روش خوشهبندی رایج برای تعیین فضای کسب و کاری هر شعبه استفاده شده و در گام دوم یک الگوریتم ژنتیک دوهدفه نوین به منظور بهینهسازی ضرایب اهمیت هر خوشه پیشنهاد شده است. روش پیشنهادی با چهار روش شناخته شده مقایسه شده و نتایج در مواردی عملکرد موثر روش پیشنهادی را نشان میدهد.
کلیدواژههای فارسی مقاله
فضای کسب و کاری شعب، ضرایب اهمیت شاخصهای ارزیابی عملکرد، خوشهبندی، بهینهسازی، الگوریتم ژنتیک چندهدفه
عنوان انگلیسی
Determining the coefficients of branch performance evaluation indicators using proposed two-objective genetic algorithm
چکیده انگلیسی مقاله
ABSTRACT Nowadays, we are witnessing financial markets becoming more competitive, and banks are facing many challenges to attract more deposits from depositors and increase their fee income. Meanwhile, many banks use performance-based incentive plans to encourage their employees to achieve their short-term goals. In the meantime, fairness in the payment of bonuses is one of the important challenges of banks, because not paying attention to this issue can become a factor that destroys the motivation among employees and prevents the bank from achieving its short-term and mid-term goals. This article is trying to tackle the problem of optimizing the coefficients of branch performance evaluation indicators based on their business environment in one of the state banks of Iran. In this article, a two-objective genetic algorithm is proposed to solve the problem. This article is comprised of four main sections. The first section is dedicated to the problem definition which is what is our meaning of optimizing the importance coefficients of branches based on the business environment. The second section is about our proposed solution for the defined problem. In the third section, we are comparing the performance of the proposed two-objective genetic algorithm on the defined problem with the performance of four well-known multi-objective algorithms including NSGAII, SPEAII, PESAII, and MOEA/D. And finally, the set of ZDT problems which is a standard set of multi-objective problems is taken into account for evaluating the general performance of the proposed algorithm comparing four well-known multi-objective algorithms. Our proposed solution for solving the problem of optimizing branch performance coefficients includes two main steps. First, identifying the business environment of the branches and second, optimizing the coefficients with the proposed two-objective genetic algorithm. In the first step, the k-means clustering algorithm is applied to cluster branches with similar business environments. In the second step, to optimize the coefficients, it is necessary to specify the fitness functions. The defined problem is a two-objective problem, the first objective is to minimize the deviation of the real performance of the branches from the expected performance of them, and the second objective is to minimize the deviation of the coefficients from the coefficients determined by the experts. To solve this two-objective problem, a two-objective genetic algorithm is proposed. In this article, two approaches are adopted to compare the proposed solution performance. In the first stage, the results of applying the proposed two-objective genetic algorithm have been compared with the results of applying four well-known multi-objective genetic algorithms on the problem of optimizing the coefficients. The results of this comparison show that the proposed algorithm has outperformed the other compared methods based on the S indicator and run time, and it is also ranked second after the NSGAII algorithm in terms of the HV indicator. Finally, for evaluating the performance of the proposed algorithm with other well-known methods, the set of ZDT problems including ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 has also been taken into consideration. At this stage, the performance of the proposed algorithm has been compared with the four mentioned algorithms based on four key indicators, including GD, S, H, and run time. The results show, the proposed algorithm has outperformed significantly in terms of run time in all five ZDT problems. In terms of GD indicator, the performance of our proposed algorithm is located in the first or second rank among all considered algorithms. In addition, in terms of S and H indicators in many cases, the proposed algorithm outperformed the other well-known algorithms.
کلیدواژههای انگلیسی مقاله
Branch business space, coefficients of performance evaluation indicators, clustering, optimization, two-objective genetic algorithm.
نویسندگان مقاله
الهام حامدی | Elham Hamedi
Islamic Azad University, Science and Research Branch of Tehran
دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران
میترا میرزارضایی | Mitra Mirzarezaee
Islamic Azad University, Science and Research Branch of Tehran
دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران
نشانی اینترنتی
http://jsdp.rcisp.ac.ir/browse.php?a_code=A-10-1320-6&slc_lang=fa&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
مقالات پردازش دادههای رقمی
نوع مقاله منتشر شده
پژوهشی
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات