این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Medical Signals and Sensors، جلد ۱۳، شماره ۴، صفحات ۲۷۲-۲۷۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Emotion Recognition Embedded System using a Lightweight Deep Learning Model
چکیده انگلیسی مقاله Background: Diagnosing emotional states would improve human-computer interaction (HCI) systems to be more effective in practice. Correlations between Electroencephalography (EEG) signals and emotions have been shown in various research; therefore, EEG signal-based methods are the most accurate and informative. Methods: In this study, three Convolutional Neural Network (CNN) models, EEGNet, ShallowConvNet and DeepConvNet, which are appropriate for processing EEG signals, are applied to diagnose emotions. We use baseline removal preprocessing to improve classification accuracy. Each network is assessed in two setting ways: subject-dependent and subject-independent. We improve the selected CNN model to be lightweight and implementable on a Raspberry Pi processor. The emotional states are recognized for every three-second epoch of received signals on the embedded system, which can be applied in real-time usage in practice. Results: Average classification accuracies of 99.10% in the valence and 99.20% in the arousal for subject-dependent and 90.76% in the valence and 90.94% in the arousal for subject independent were achieved on the well-known DEAP dataset. Conclusion: Comparison of the results with the related works shows that a highly accurate and implementable model has been achieved for practice.
کلیدواژه‌های انگلیسی مقاله Convolutional neural network, electroencephalography, embedded system, emotion recognition

نویسندگان مقاله | Mehdi Bazargani
Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan


| Amir Tahmasebi
Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan


| Mohammadreza Yazdchi
Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran


| Zahra Baharlouei



نشانی اینترنتی http://jmss.mui.ac.ir/index.php/jmss/article/view/688
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Articles
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات