این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Fuzzy Systems، جلد ۶، شماره ۲، صفحات ۱-۶

عنوان فارسی A NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
چکیده فارسی مقاله Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposed
a modification of fuzzy linear regression analysis. Their modification
is based on a criterion of minimizing the difference of the fuzzy membership
values between the observed and estimated fuzzy numbers. We show that their
method often does not find acceptable fuzzy linear regression coefficients and
to overcome this shortcoming, propose a modification. Finally, we present two
numerical examples to illustrate efficiency of the modified method.
کلیدواژه‌های فارسی مقاله Fuzzy linear regression، Fuzzy number، Least-squares method. This paper is supported in part by Fuzzy Systems and Applications Center of Excellence، Shahid Bahonar University of Kerman، Kerman، I.R. of Iran،

عنوان انگلیسی A NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
چکیده انگلیسی مقاله Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposed
a modification of fuzzy linear regression analysis. Their modification
is based on a criterion of minimizing the difference of the fuzzy membership
values between the observed and estimated fuzzy numbers. We show that their
method often does not find acceptable fuzzy linear regression coefficients and
to overcome this shortcoming, propose a modification. Finally, we present two
numerical examples to illustrate efficiency of the modified method.
کلیدواژه‌های انگلیسی مقاله Fuzzy linear regression, Fuzzy number, Least-squares method. This paper is supported in part by Fuzzy Systems and Applications Center of Excellence, Shahid Bahonar University of Kerman, Kerman, I.R. of Iran

نویسندگان مقاله H. Hassanpour |
Department of Mathematics, University of Birjand, Birjand, Iran

H. R. Malek |
Faculty of Basic Sciences, Shiraz University of Technology, Shiraz, Iran

M. A. Yaghoobi |
Department of Statistics, Shahid Bahonar University of Kerman, Kerman, Iran


نشانی اینترنتی http://ijfs.usb.ac.ir/article_203_91984c1c552a9c8428c6600866e5cadd.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات