این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Analytical and Bioanalytical Chemistry Research، جلد ۸، شماره ۱، صفحات ۶۵-۷۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Symbolic Regression via Genetic Programming Model for Prediction of Adsorption Efficiency of some Pesticides on MWCNT/PbO2 Nanocomposite
چکیده انگلیسی مقاله The present study quantitative structure-property relationship (QSPR) model developed for the adsorption efficiency (AE) of 70 pesticides in water sample on MWCNT/PbO2 solid phase extraction cartridge. Stepwise-multiple linear regression (SW-MLR) method employed for selection of descriptors. The selected descriptors are MATS7v, MATS6c, GATS3s, ATSC6i, C040, SpMin8_Bhi, E2v, JGI1 and Mor08u. Curiosity at the effective descriptors indicates electronic, topological and geometrical characteristics of studied pesticides are the most effective parameters on their AE on MWCNT/PbO2 nanocomposite adsorbent. Symbolic regression via genetic programming (SR-GP) utilized to offer the symbolic regression QSPR model. The accuracy and predictive power of the SR-GP model compared with traditional linear and nonlinear regression models contain multiple linear regression (MLR) and support vector regression (SVR). Inspection the fitness parameters confirmed the superiority of SR-GP model over MLR, and SVR models. In SR-GP model, the correlation coefficient (R) was 0.930 and 0.890, and the root mean square errors (RMSE) were 0.04 and 0.05 for the training and test sets, respectively. These results can be used to predict the AE for other pesticides by MWCNT/PbO2 adsorbent and designing a more efficient nano cartridge for SPE.
کلیدواژه‌های انگلیسی مقاله Quantitative structure-property relationship,Pesticides,Adsorption efficiency,MWCNT/PbO2,Solid phase extraction,Symbolic regression via genetic programming

نویسندگان مقاله Zahra Pahlavan Yali |
Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran

Mohammad Hossein Fatemi |
Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran


نشانی اینترنتی https://www.analchemres.org/article_114540_d44c87e686c2370cec8371685d5dcf69.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات