این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
International Journal of Coastal and Offshore Engineering
، جلد ۷، شماره ۲، صفحات ۱-۱۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Inter-comparison of single-sensor and merged multi-sensor ocean color chlorophyll-a products in the shallow turbid waters - case study: Persian Gulf
چکیده انگلیسی مقاله
Ocean color satellite sensors provide the only long-term Essential Climate Variable (ECV) globally that targets Chlorophyll-a concentrations (Chl-a) as the most important biological factor in the oceans. It is difficult to develop the long-term and consistent ocean color time-series for climate studies due to the differences in characteristics, atmospheric correction, Chl-a retrieval algorithms, and limited lifespans of individual satellite sensors. Therefore, the merged multi-sensor ocean color datasets were developed by merging data from different satellite sensor products. The performance of the commonly used single-sensor and multi-sensor merged ocean color datasets is a challenging issue over highly turbid coastal waters and dusty atmospheric conditions. In this study, we compared the common single-sensor [Sea-viewing Wide Field-ofview Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), Visible Imager Radiometer (VIIRS), and Sentinel-3 Ocean and Land Colour Instrument (OLCI)], and merged multi-sensor [Ocean Colour Climate Change Initiative (OC-CCI), and GlobColour weighted average (GC-AVW) and Garver-SiegelMaritorena (GC-GSM)] Chl-a datasets over the Persian Gulf, known as optically complex and highly turbid water bodies in a dusty atmospheric condition. The results indicate that the OC-CCI dataset provides more spatial and temporal coverages than the other datasets. Temporal consistency between single-sensor and merged datasets was made in two different timespans during the common period of sensors and during the continuous lifespan intersection between individual two-paired of datasets. The statistical metrics were calculated to show the temporal consistency between Chl-a datasets during the common and continuous time periods. Correlation between OC-CCI and the other datasets showed that the relationships between datasets did not change significantly during the proposed time periods. Further, it was indicated that the OC-CCI product is more constant than the other single-sensor and merged products. It was shown that OC-CCI datasets were more consistent with MERIS and GC-GSM datasets, and SeaWiFS and GC-AVW were not significantly correlated to the other datasets. The results revealed that the single sensor products that use POLYMER atmospheric correction algorithm (e.g. MERIS), and merged multi-sensor product that performs the GSM blending algorithms (e.g. GC-GSM) are more consistent and stable than the other products over the study area.
کلیدواژههای انگلیسی مقاله
Remote Sensing,phytoplankton,spatial coverage,complex waters,dusty atmosphere
نویسندگان مقاله
Masoud Moradi |
Iranian National Institute of Oceanography and Atmospheric Science
نشانی اینترنتی
https://www.ijcoe.org/article_155185_b5858c909442cc6286ec9dd9fed2e532.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات