این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Coastal and Offshore Engineering، جلد ۳، شماره ۴، صفحات ۳۷-۴۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Artificial Neural Network for Prediction of Front Slope Recession in Berm Breakwater
چکیده انگلیسی مقاله Berm breakwaters are used as protective structures against the wave attack where larger quarry materials as armor stone is scarce, or large quarry materials are available but using berm breakwater lowers the costs considerably. In addition, wave overtopping in berm breakwaters are significantly lower than the traditional ones for equal crest level because of the wave energy dissipation on the berm.The most important design parameter of berm breakwaters is its seaward berm recession which has to be well estimated. In this paper a method has been developed to estimate the front slope recession of berm breakwaters using artificial neural networks with high accuracy. Four different available data-sets from four experimental tests are used to cover wide range of sea states and structural parameters. The network is trained and validated against this database of 1039 data. Comparisons is made between the ANN model and recent empirical formulae to show the preference of new ANN model.
کلیدواژه‌های انگلیسی مقاله Recession,Berm breakwater,Artificial Neural Network

نویسندگان مقاله Alireza Sadat Hosseini |
University of Tehran

Mehdi Shafieefar |
Tarbiat Modares University

Omid Alizadeh |
University of Tehran


نشانی اینترنتی https://www.ijcoe.org/article_149286_3b76f71dfb9b123d01c0a01acd9f6fef.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات