این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
International Journal of Engineering
، جلد ۳۷، شماره ۲، صفحات ۳۱۲-۳۲۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Implementation of Chatbot that Predicts an Illness Dynamically using Machine Learning Techniques
چکیده انگلیسی مقاله
Timely access to healthcare is crucial in order to maintain a high standard of living. However, obtaining medical consultations can be difficult, especially for those living in remote areas or during a pandemic when face-to-face consultations are not always possible. The ability to accurately diagnose diseases is essential for effective treatment, and recent technological advancements offer a potential solution. Machine learning (ML) and Natural language processing (NLP) enables computer programs to understand human language and extract desired features from responses, allowing for human-like interaction with users. By leveraging these technologies, healthcare professionals can potentially provide more accessible and efficient medical consultations to individuals, regardless of their location. The concept is to establish an online platform where users can ask medical-related queries and receive responses from both medical professionals and fellow users. The platform would feature a Medical Chatbot, which employs advanced ML techniques to analyze user-provided symptoms and provide initial disease diagnosis and related information prior to consulting with a doctor. This disease prediction chatbot interacts dynamically with the users to enter the symptoms of the diseases and based on syntactic and semantic similarity response is given. In this work the threshold of similarity score is kept of 0.7. K-Nearest neighbors, Random forest, Support vector machine, Naive bayes and Logistic regression algorithms are used for prediction of disease based on symptoms which are faced by users. The syntactic similarity, fuzzy string matching and semantic similarity using all-MiniLM-L6-v2 model is used to improve the efficiency of the result.
کلیدواژههای انگلیسی مقاله
Artificial intelligence,Machine Learning,Natural Language Processing,Healthcare,Chatbot
نویسندگان مقاله
S. Shedthi B. |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Computer Science and Engineering, Nitte, India
V. Shetty |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Mechanical Engineering, Nitte, India
R. Chadaga |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Computer Science and Engineering, Nitte, India
R. Bhat |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Computer Science and Engineering, Nitte, India
B. Preethi |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Computer Science and Engineering, Nitte, India
P. Kini K. |
Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Computer Science and Engineering, Nitte, India
نشانی اینترنتی
https://www.ije.ir/article_178978_402b82d349e7a0868a878d0a8ed1b654.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات