این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۶، شماره ۱، صفحات ۱۳۰-۱۳۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Multi-criteria– Recommendations using Autoencoder and Deep Neural Networks with Weight Optimization using Firefly Algorithm
چکیده انگلیسی مقاله Demand for personalized recommendation systems elevated recently by e-commerce, news portals etc., to grab the customer interest on the sites. Collaborative filtering proves to be powerful technique but it always suffers from data sparsity, cold-start and robustness issues. These issues have been tackled by some approaches resulting in higher accuracy. Few of them take user profiles, item attributes and rating time as the side information along with ratings to give interpretative personalized recommendations. These type of approaches tries to find which factors mainly impacted the user to rate an item. Another approach extends the single-criteria ratings of collaborative filtering to multi-criteria ratings. Our approach exploits non-linear interpretative recommendations by exploring Multi-criteria ratings by combination of Autoencoders with dropout layer and firefly algorithm optimized weights for deep neural networks. Our approach solves data sparsity, scalability issues and fetch accurate recommendations. Experimental evaluations have been done using Yahoo! Movie and MovieLens datasets. Our approach outperforms in robustness and accuracy with respect to previous research works.
کلیدواژه‌های انگلیسی مقاله Multi-Criteria Recommendation Systems,Autoencoder,Firefly Algorithm,deep neural networks,Deep Learning

نویسندگان مقاله G. Spoorthy |
Department of CSE, NIT Warangal, Warangal, India

S. G. Sanjeevi |
Department of CSE, NIT Warangal, Warangal, India


نشانی اینترنتی https://www.ije.ir/article_158950_8dc5ac6d8052d1fc2998e6869e08908d.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات