این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
International Journal of Engineering
، جلد ۳۴، شماره ۹، صفحات ۲۱۴۸-۲۱۵۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Adpative Neuro-Fuzzy Inference System Estimation Propofol dose in the induction phase during anesthesia; case study
چکیده انگلیسی مقاله
In this study, the anesthetic drug dose estimation due to the physiological patients' parameters is considered. The most critical anesthetic drug, propofol, is considered in this modeling. Among the intravenous anesthetic drugs, propofol is one of the most widely used during surgery in the induction and maintenance phase of anesthesia. The effect of propofol as an intravenous anesthetic agent is as well as sedate in/outside the operation theatres. In this work, the adaptive neuro-fuzzy inference system estimation model is applied to calculate the drug dose to administrate anesthesia safety. The model estimates the propofol dose during the induction phase based on the physiological parameters (age, weight, height, gender), blood pressure, heart rate, and the depth of anesthesia of real patients. The sensitivity analysis was applied to evaluate the validity of the estimation model, so the appropriate agreement is obtained. In the end, the proposed estimation model's performance is compared to the classical model and the actual data obtained from patients undergoing surgery. The results show that the ANFIS estimation model by 0.999 accuracies reduces the total amount of propofol dose. The proposed model not only controls the patient's depth of anesthesia accurately but also obtained outcomes in practice successfully.
کلیدواژههای انگلیسی مقاله
Propofol dose,anesthesia,ANFIS,estimation model,Intravenous Anesthetic,Induction
نویسندگان مقاله
N. Jamali |
Faculty of Industrial Engineering, Yazd University, Yazd, Iran
A. Sadegheih |
Faculty of Industrial Engineering, Yazd University, Yazd, Iran
M. M. Lotfi |
Faculty of Industrial Engineering, Yazd University, Yazd, Iran
H. Razavi |
Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
نشانی اینترنتی
https://www.ije.ir/article_134890_ea4b5ddaa5c326ef31417bca78bb0167.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات