این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 2 دی 1404
International Journal of Engineering
، جلد ۳۴، شماره ۲، صفحات ۴۵۲-۴۵۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A Clustering-Based Approach for Features Extraction in Spectro-Temporal Domain Using Artificial Neural Network
چکیده انگلیسی مقاله
In this paper, a new feature extraction method is presented based on spectro-temporal representation of speech signal for phoneme classification. In the proposed method, an artificial neural network approach is used to cluster spectro-temporal domain. Self-organizing map artificial neural network (SOM) was applied to clustering of features space. Scale, rate and frequency were used as spatial information of each point and the magnitude component was used as similarity attribute in clustering algorithm. Three mechanisms were considered to select attributes in spectro-temporal features space. Spatial information of clusters, the magnitude component of samples in spectro-temporal domain and the average of the amplitude components of each cluster points were considered as secondary features. The proposed features vectors were used for phonemes classification. The results demonstrate that a significant improvement is obtained in classification rate of different sets of phonemes in comparison to previous clustering-based methods. The obtained results of new features indicate the system error is compensated in all vowels and consonants subsets in compare to weighted K-means clustering.
کلیدواژههای انگلیسی مقاله
Spectro-temporal Features,Auditory Model,Feature Extraction,Clustering,Artificial Neural Network
نویسندگان مقاله
N. Esfandian |
Department of Electrical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
K. Hosseinpour |
Department of Artificial Intelligence and Robotics, Aryan Institute of Higher Education and Technology, Babol, Iran
نشانی اینترنتی
https://www.ije.ir/article_125133_a66b0b202d2fe77b7a2232bbb32c01a9.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات