این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
International Journal of Engineering
، جلد ۳۴، شماره ۱، صفحات ۱۴۰-۱۴۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparative Performance of Machine Learning Ensemble Algorithms for Forecasting Cryptocurrency Prices
چکیده انگلیسی مقاله
This paper discusses the problems of short-term forecasting of cryptocurrency time series using a supervised machine learning (ML) approach. For this goal, we applied two of the most powerful ensemble methods including Random Forests (RF) and Stochastic Gradient Boosting Machine (SGBM). As the dataset was collected from daily close prices of three of the most capitalized coins: Bitcoin (BTC), Ethereum (ETH) and Ripple (XRP), and as features we used past price information and technical indicators (moving average). To check the effectiveness of these models we made an out-of-sample forecast for selected time series by using the one step ahead technique. The accuracy rate of the forecasted prices by using RF and GBM were calculated. The results verify the applicability of the ML ensembles approach for the forecasting of cryptocurrency prices. The out of sample accuracy of short-term prediction daily close prices obtained by the SGBM and RF in terms of Mean Absolut Percentage Error (MAPE) for the three most capitalized cryptocurrencies (BTC, ETH, and XRP) were within 0.92-2.61 %.
کلیدواژههای انگلیسی مقاله
Cryptocurrencies Time Series Short,term Forecasting Machine Learning Random Forest Gradient Boosting
نویسندگان مقاله
V. Derbentsev |
Informatics and Systemology Department, Institute Information Technologies in Economics, Kyiv National Economic University named after Vadim Hetman, Kyiv, Ukraine
V. Babenko |
International E-commerce and Hotel & Restaurant Business Department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
K. Khrustalev |
KhrustalovaDepartment of Computer-Integrated Technologies, Automation and Mechatronics, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
H. Obruch |
Department of Economics and Management of Industrial and Commercial Business, Ukrainian State University of Railway Transport, Ukraine
S. Khrustalova |
Department of Computer-Integrated Technologies, Automation and Mechatronics, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
نشانی اینترنتی
https://www.ije.ir/article_122162_e3dad2b825945dd0a62d13bed38eb058.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات