این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Engineering، جلد ۳۳، شماره ۷، صفحات ۱۲۰۸-۱۲۱۳

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Ensemble Click Model for Web Document Ranking
چکیده انگلیسی مقاله Annually, web search engine providers spend a lot of money on re-ranking documents in search engine result pages (SERP). Click models provide advantageous information for re-ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to predict users' clicks on SERPs simultaneously, the first module tries to predict users' click behaviors using Probabilistic Graphical Models, the second module is a Time-series Deep Neural Click Model which predicts users' clicks on documents and finally, the third module is a similarity-based measure which creates a graph of document-query relations and uses SimRank Algorithm to predict the similarity. After running these three simultaneous processes, three click probability values are fed to an MLP classifier as inputs. The MLP classifier learns to decide on top of the three preceding modules, then it predicts a probability value which shows how probable a document is to be clicked by a user. The proposed system is evaluated on the Yandex dataset as a standard click log dataset. The results demonstrate the superiority of our model over the well-known click models in terms of perplexity.
کلیدواژه‌های انگلیسی مقاله Click Modeling Document Re,ranking Modeling Users&apos, Behavior Search Engine Result Page Enhancement

نویسندگان مقاله D. Bidekani Bakhtiarvand |
Department of Artificial Intelligence, Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

S. Farzi |
Department of Artificial Intelligence, Faculty of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran


نشانی اینترنتی https://www.ije.ir/article_108456_af1c1d64f98f05481cb7eb3237d54097.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات