این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
International Journal of Transportation Engineering
، جلد ۱۰، شماره ۴، صفحات ۱۱۷۵-۱۱۹۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Intelligent Air Traffic Management Methods, Case Study: a Proposed Deep Learning Method for Mashhad Airport Air Traffic Management
چکیده انگلیسی مقاله
Air traffic management (ATM) is a set of management, analytical, and operational techniques and tools, which are used to optimize the traffic flow and exploit the existing flight system capacity. However, one of the challenges in ATM use is the prevention of flight delays. Several methods such as data mining, artificial neural network evolutionary algorithm, and fuzzy logic are available in the ATM field. But the complexity level as the number of the available categories for classification increases, making it impossible to use these algorithms in air traffic management. This study is aimed to comprehensively evaluate the techniques applied in ATM and assess the tools and criteria in this context. Also, show that the artificial neural network (ANN) and long short term memory (LSTM) algorithms are most frequently used in ATM. Then a hybrid deep learning model for Mashhad airport air traffic management systems was proposed. The analysis of the system was performed using the actual data of Mashhad Airport. Our results demonstrate that among various clustering algorithms, K-means and deep learning methods are more efficient and widely used. Evaluation criteria such as accuracy rate, delay, The Root mean square error (RMSE) and mean square error (MSE) are more commonly applied in air traffic system evaluation. The implementation of the air traffic management base on hyprid deep learning could be increase accuracy of flights control operation in airports.
کلیدواژههای انگلیسی مقاله
Data mining,Deep Network,Air Traffic Management,MSE,RMSE
نویسندگان مقاله
Mahdi Yousefzadeh Aghdam |
PhD Student, Department of computer engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
Seyed Reza Kamel Tabbakh |
Assistant Prof, Department of computer engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Seyed Javad Seyed Mahdavi Chabok |
Assistant Prof , Department of computer engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Maryam Kheirabadi |
Assistant Prof , Department of computer engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
نشانی اینترنتی
http://www.ijte.ir/article_163126_fd128d81f078e6a3c9e66343fb4e74fd.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات