این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
International Journal of Transportation Engineering
، جلد ۱۰، شماره ۳، صفحات ۱۰۸۹-۱۱۰۲
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
New Optimization Approach for Handling Imbalanced Data in Road Crash Severity
چکیده انگلیسی مقاله
Accidents are a major problem that claim the lives of many people in the world each year. Fatalities and severe injuries could leave adverse and irreversible impacts on public health and economic prospects. A review of the variables affecting the severity of crash injuries can help reduce fatal accidents. However, a detailed prediction of fatal crashes as a smaller-data class than other classes is seen as a challenge. This study uses three robust machine learning such as Bayesian classifier, random forest, and support vector machine techniques. First, three imbalanced data prediction models were developed, suggesting they could not differentiate fatal data from injury data. To address this problem, three random, k-means clustering, meta-heuristic algorithms clustering techniques were used to balance the data. It should be noted that the genetic algorithm performed better than the particles swarm. Models developed by intelligent optimization methods, k-means clustering, and random methods were found to be more accurate, respectively. These criteria helped evaluate the models developed, which yielded the best model. The support vector machine method for genetic clustering-balanced data could predict fatal, and injury crashes with a 0.96% accuracy, becoming the best model. Finally, sensitivity analysis was performed on the best model, indicating that the highway, horizontal curves, and head-on variables contributed to fatal accidents.
کلیدواژههای انگلیسی مقاله
Genetic Algorithm,particles swarm,optimization,crashes,Machine Learning
نویسندگان مقاله
Abbas Rouhi Mashhadsari |
Ph.D. Candidate, School of Civil Engineering, Shomal University, Mazandaran, Amol, Iran
Gholamali Behzadi |
Assistant Professor, School of Civil Engineering, Shomal University, Mazandaran, Amol, Iran
نشانی اینترنتی
http://www.ijte.ir/article_144349_56d4eaaad044437b0a2877942ed454aa.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات