این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Transportation Engineering، جلد ۸، شماره ۳، صفحات ۲۲۵-۲۴۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Genetic Algorithm with Multiple Populations to Reduce Fuel Consumption in Supply Chain
چکیده انگلیسی مقاله Reducing fuel consumption by transportation fleet in a supply chain, reduces transportation costs and consequently, the product final cost. Moreover, it reduces environmental pollution, and in some cases, it helps governments constitute less subsidies for fuels. In this paper, a supply chain scheduling is studied, with the two objective functions of minimizing the total fuel consumption, and the total order delivery time. After presenting the mathematical model of the problem, a genetic algorithm, named Social Genetic Algorithm (SGA) is proposed to solve it. The proposed algorithm helps decision makers determine the allocation of orders to the suppliers and vehicles and production and transportation scheduling to minimize total order delivery time and fuel consumption. In order for SGA performance evaluation, its results are compared with another genetic algorithm in the literature and optimal solution. Finally, a sensitivity analysis is performed on SGA. The results of comparisons also show the high performance of SGA. Moreover, by increasing the number of suppliers and vehicles and decreasing the number of orders, the value of the objective function is reduced.
کلیدواژه‌های انگلیسی مقاله Transportation,Fuel consumption,Supply chain management,routing,Genetic Algorithm

نویسندگان مقاله Mohammad Ali Beheshtinia |
Associate Professor, Industrial Engineering Department, Semnan University, Semnan, Iran

Bahar Ahmadi |
MSc. Grad., Department of Industrial Engineering, , Semnan University, Semnan, Iran

Masood Fathi |
Assistant Professor, Department of Production and Automation Engineering, University of Skövde, Skövde, Sweden


نشانی اینترنتی http://www.ijte.ir/article_91266_026852601c6fecc707de4a36f5922a8e.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات