این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
International Journal of Transportation Engineering
، جلد ۸، شماره ۲، صفحات ۱۸۵-۱۹۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Implementation of the AI-based Traffic Flow Prediction in The Resilience Control Scheme
چکیده انگلیسی مقاله
Today, often a reliable and dynamic sensor system is found to be necessary to control intelligent transportation systems. While these dynamical sensor systems are often found to be useful for the ordinary situations, the resilience-control-related issues are not yet fully addressed in the literature. The traffic flow is an important resource, which if found to be disturbed by a malicious threat it may cause further insecurities, e.g. if the sensor data is not accessible due to a malicious sabotage of the on-the-road sensors. Furthermore, often centers for the data gathering and prediction are suffering from data-loss because of imperfections of the data gathering itself. To overcome the resulting difficulties, a prediction engine is required to estimate the traffic flow, with the ability to compensate for the lost sensors.
In this paper, a traffic flow prediction engine is proposed in which the artificial-intelligence-based methods are used to perform the optimization task. This method is implemented for the test in the real-world situation and its efficiency in traffic estimation is proved to be reliable. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is trained with the particle swarm optimization (PSO) algorithm and the Artificial Neural Network model (ANN) is used to predict the flow. In addition, The Principal Components Analysis (PCA) method is adopted to reduce the dimension of the features. The results show the method's efficiency in predicting the traffic flow. This prediction engine can be practically implemented and used as a replacement for the sensors to predict the traffic flow.
کلیدواژههای انگلیسی مقاله
intelligent methods,Traffic Estimator Engine,Reliable Sensor System,principal components analysis
نویسندگان مقاله
Majid Mohammadi |
PhD candidate, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
Abbas Dideban |
Associated Professor, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
Asad Lesani |
Postdoctoral fellows, Civil Engineering Department, McGill University, Montreal, Canada
Behzad Moshiri |
Professor, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
نشانی اینترنتی
http://www.ijte.ir/article_119871_96c19f4926449c966112ad1ae26c6431.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات