این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Chemistry and Chemical Engineering، جلد ۴۲، شماره ۷، صفحات ۲۰۷۹-۲۰۸۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An AI-Based Modelling of a Sorption Enhanced Chemical-Looping Methane Reforming Unit
چکیده انگلیسی مقاله Hydrogen as a green fuel has attracted enormous attention recently. Although hydrogen combustion produces no harmful by-products, hydrogen production can be almost disastrous. Hydrogen production mainly originates from fossil fuels, and more than 80% of hydrogen production is produced using fossil fuel reformation with CO2 formation as a by-product. Light hydrocarbon gases, predominantly methane, are extensively used for hydrogen production. While methane reforming is an economical and efficient process, decarburization of flue gas can be a challenge. Processes involving chemical looping can be used to mitigate these challenges, and they are favorable for simultaneous CO2 capture during hydrogen generation. Intelligent models can help have accurate monitoring of such plants. The aim of this paper is to provide an Artificial Intelligence (AI) based approach to model a Sorption-Enhanced Chemical-Looping Reforming (SECLR) unit. To this end first, a SECLR unit was simulated using ASPEN Plus version 11. Then the simulation results were validated by experimental data, and the SECLR unit went through 31000 different scenarios. The derived data from ASPEN Plus was modeled and simulated with machine learning methods to estimate the CH4 conversion, H2 Purity, and CO2 removal in the SECLR process. Artificial neural networks, ensemble learning, and support vector machine methods were developed to predict the CH4 conversion, H2 Purity, and CO2 removal in a SECLR unit. All three models could provide satisfactory results for predicting CH4 conversion, CO2 removal, and H2 Purity. According to statistical evaluations, Artificial Neural Network (ANN) outperformed Support Vector Machine (SVM) and ensemble learning in producing results with lower error values and higher accuracy with an average 5.23e-5 of error and R2 of 0.9864.
کلیدواژه‌های انگلیسی مقاله Machine Learning,methane reforming,Artificial neural network,Chemical-looping reforming,Ensemble Learning

نویسندگان مقاله Reza Salehi |
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, ITALY

Hassan Rahimzadeh |
Department of Biosystems Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN

Pouria Heidarian |
Energy Department, Politecnico di Milano, Milan, ITALY

Farhad Salimi |
Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, I.R. IRAN


نشانی اینترنتی https://ijcce.ac.ir/article_699875_4db4a36c2b668c5d0d7a436e1d283480.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات