این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۴۲، شماره ۷، صفحات ۲۰۷۹-۲۰۸۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An AI-Based Modelling of a Sorption Enhanced Chemical-Looping Methane Reforming Unit
چکیده انگلیسی مقاله
Hydrogen as a green fuel has attracted enormous attention recently. Although hydrogen combustion produces no harmful by-products, hydrogen production can be almost disastrous. Hydrogen production mainly originates from fossil fuels, and more than 80% of hydrogen production is produced using fossil fuel reformation with CO
2
formation as a by-product. Light hydrocarbon gases, predominantly methane, are extensively used for hydrogen production. While methane reforming is an economical and efficient process, decarburization of flue gas can be a challenge. Processes involving chemical looping can be used to mitigate these challenges, and they are favorable for simultaneous CO
2
capture during hydrogen generation. Intelligent models can help have accurate monitoring of such plants. The aim of this paper is to provide an Artificial Intelligence (AI) based approach to model a Sorption-Enhanced Chemical-Looping Reforming (SECLR) unit. To this end first, a SECLR unit was simulated using ASPEN Plus version 11. Then the simulation results were validated by experimental data, and the SECLR unit went through 31000 different scenarios. The derived data from ASPEN Plus was modeled and simulated with machine learning methods to estimate the CH
4
conversion, H
2
Purity, and CO
2
removal in the SECLR process. Artificial neural networks, ensemble learning, and support vector machine methods were developed to predict the CH
4
conversion, H
2
Purity, and CO
2
removal in a SECLR unit. All three models could provide satisfactory results for predicting CH
4
conversion, CO
2
removal, and H
2
Purity. According to statistical evaluations, Artificial Neural Network (ANN) outperformed Support Vector Machine (SVM) and ensemble learning in producing results with lower error values and higher accuracy with an average 5.23e-5 of error and R
2
of 0.9864.
کلیدواژههای انگلیسی مقاله
Machine Learning,methane reforming,Artificial neural network,Chemical-looping reforming,Ensemble Learning
نویسندگان مقاله
Reza Salehi |
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, ITALY
Hassan Rahimzadeh |
Department of Biosystems Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN
Pouria Heidarian |
Energy Department, Politecnico di Milano, Milan, ITALY
Farhad Salimi |
Department of Chemical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, I.R. IRAN
نشانی اینترنتی
https://ijcce.ac.ir/article_699875_4db4a36c2b668c5d0d7a436e1d283480.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات