این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Aerospace Science and Technology، جلد ۱۴، شماره ۲، صفحات ۱۹-۲۹

عنوان فارسی Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System
چکیده فارسی مقاله In this study, Adaptive Network-Based Fuzzy Inference System (ANFIS) is presented with sensor data fusion approach to estimate satellite attitude. The active sensors are sun and earth sensors. Satellite attitude dynamic, including attitude quaternion and angular velocities are estimated simultaneously utilizing the measured values by the sensors. The Extended Kalman Filter (EKF) is employed to verify and evaluate the efficiency of the presented method. Additionally, the neural networks with Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) are also designed to prove the superiority of the proposed ANFIS network among the smart methods of sensor data fusion for satellite attitude estimation. Root Mean Square Error (RMSE) as a numerical criterion and graphical analysis of residues are utilized to evaluate the simulation results. The simulations confirm that the obtained estimations from ANFIS network have more accuracy in modeling of nonlinear complex systems compared to EKF, MLP and RBF networks. In general, using intelligent data fusion, especially ANFIS, reduces attitude estimation error and time in comparison to the classical EKF method.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Intelligent Sensor Fusion in High Precision Satellite Attitude Estimation Utilizing an Adaptive-Network-Based Fuzzy Inference System
چکیده انگلیسی مقاله In this study, Adaptive Network-Based Fuzzy Inference System (ANFIS) is presented with sensor data fusion approach to estimate satellite attitude. The active sensors are sun and earth sensors. Satellite attitude dynamic, including attitude quaternion and angular velocities are estimated simultaneously utilizing the measured values by the sensors. The Extended Kalman Filter (EKF) is employed to verify and evaluate the efficiency of the presented method. Additionally, the neural networks with Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) are also designed to prove the superiority of the proposed ANFIS network among the smart methods of sensor data fusion for satellite attitude estimation. Root Mean Square Error (RMSE) as a numerical criterion and graphical analysis of residues are utilized to evaluate the simulation results. The simulations confirm that the obtained estimations from ANFIS network have more accuracy in modeling of nonlinear complex systems compared to EKF, MLP and RBF networks. In general, using intelligent data fusion, especially ANFIS, reduces attitude estimation error and time in comparison to the classical EKF method.
کلیدواژه‌های انگلیسی مقاله attitude estimation,Data Fusion,ANFIS,Extended Kalman Filter,Neural Network

نویسندگان مقاله Mahdi Fakoor |
University of Tehran

Hamidreza Heidari |
University of Tehran

Behzad Moshiri |
University of Tehran

Amir Reza Kosari |
university of Tehran


نشانی اینترنتی https://jast.ias.ir/article_134152_a4f064054ec383c7147ff75e354bafc2.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات