این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Industrial Engineering and Management Studies
، جلد ۷، شماره ۲، صفحات ۲۲۳-۲۳۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Ant colony optimization, genetic algorithm and hybrid metaheuristics: A new solution for parallel machines scheduling with sequence-dependent set-up times
چکیده انگلیسی مقاله
The parallel machine scheduling problem (PMSP) is one of the most difficult classes of problem. Due to the complexity of the problem, obtaining optimal solution for the problems with large size is very time consuming and sometimes, computationally infeasible. So, heuristic algorithms that provide near-optimal solutions are more practical and useful. The present study aims to propose a hybrid metaheuristic approach for solving the problem of unrelated parallel machine scheduling, in which, the machine and the job sequence dependent setup times are considered. A Mixed-Integer Programming (MIP) model is formulated for the unrelated PMSP with sequence dependent setup times. The solution approach is robust, fast, and simply structured. The hybridization of Genetic Algorithm (GA) with Ant Colony Optimization (ACO) algorithm is the key innovative aspect of the approach. This hybridization is made in order to accelerate the search process to near-optimal solution. After computational and statistical analysis, the two proposed algorithms are used to compare with the proposed hybrid algorithm to highlight its advantages in terms of generality and quality for short and large instances. The results show that the proposed hybrid algorithm has a very good performance as regards the instance size and provides the acceptable results.
کلیدواژههای انگلیسی مقاله
scheduling,parallel machines,ant colony optimization,Genetic Algorithm,machine scheduling
نویسندگان مقاله
Mahdi Nakhaeinejad |
Department of Industrial Engineering, Yazd University, Yazd, Iran
نشانی اینترنتی
https://jiems.icms.ac.ir/article_120385_e565a9cdefbc67f2688a2f2944069e16.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات