این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Sciences Islamic Republic of Iran، جلد ۲۲، شماره ۱، صفحات ۶۳-۱۳۲

عنوان فارسی The Symmetries of Equivalent Lagrangian Systems and Constants of Motion
چکیده فارسی مقاله In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to the case of time-dependent Lagrangian systems. Also some new theorems and corollaries will be proved. Finally we make a 1-1 correspondence between the symmetries of equivalent time-dependent lagrangian systems and constants of motion by the new geometric concept of Galilean space-time.
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی The Symmetries of Equivalent Lagrangian Systems and Constants of Motion
چکیده انگلیسی مقاله In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to the case of time-dependent Lagrangian systems. Also some new theorems and corollaries will be proved. Finally we make a 1-1 correspondence between the symmetries of equivalent time-dependent lagrangian systems and constants of motion by the new geometric concept of Galilean space-time.
کلیدواژه‌های انگلیسی مقاله Infinitesimal symmetries, Lagrangian system, Symmetries of Lagrangian systems, Hamiltonian system, Constant of motion

نویسندگان مقاله N. Elyasi |
Amirkabir University of Technology


نشانی اینترنتی https://jsciences.ut.ac.ir/article_22214_95e14ab8a13e141de4deda070f30dd1b.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات