این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Physical Chemistry Research، جلد ۱۰، شماره ۱، صفحات ۳۱-۴۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Docking and 2D-Structure-activity Relationship and ADMET Studies of Acetylcholinesterase Inhibitors
چکیده انگلیسی مقاله In this work, a quantitative structure-activity relationship (QSAR) for some tacrine derivatives inhibitors of acetylcholinesterase was modeled using ligand-receptor interconnection interaction space. The descriptors were obtained by multivariate image analysis (MIA) of each molecule. Docking studies were performed to determine the best conformers of inhibitors. In the first step, the best pose of all the ligands was selected. Afterward, an MIA-QSAR model using ligand-receptor interconnection data was developed. The pool of descriptors was compressed by principal component analysis (PCA). Variable selection was carried out by genetic algorithm (GA) followed by model building using the support vector machine (SVM) regression method. The validation of the model's predictive ability was studied by a validation set containing 11 individual compounds. The Q2, r2 and, ∆r_m^2 test prediction values for PCA-GA-SVM model were 0.62, 0.89 and 0.145, respectively. After validating the results with all statistical data, three new molecules were designed by the MIA-QSAR model. Afterward, new molecules docked in the AChE active site. Docking studies were showed the amino acids TYR70, TYR121, TYR334, TRP279, PHE288, PHE290, TRP84, TRP334, and SER286 are active amino acids in the complex. Finally, the ADMET parameters of the new compounds were calculated and were in acceptable ranges.
کلیدواژه‌های انگلیسی مقاله Molecular docking,Multivariate image analysis-QSAR (MIA-QSAR),Ligand-receptor interaction,Acetylcholinesterase (AChE),ADMET

نویسندگان مقاله Fatemeh Ansari |
Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

Ali Niazi |
Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Jahan Ghasemi |
Drug Design in Silico Lab, School of Sciences, Chemistry Faculty, University of Tehran, Teheran, Iran

Atisa Yazdanipour |
Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran


نشانی اینترنتی https://www.physchemres.org/article_136464_16dbd3d661453b1909d8fa0d91c0d94a.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات